HW1 Monday, January 30, 2023, HWs solutions:

Problem 1: Reference particle and reference orbit. 6points

Using accelerator Hamiltonian (M1.19), corresponding differential equations (M1.20), expansion
of the vector and scalar potentials (M1.21), show that for a reference particle that is following a
reference “trajectory”:
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with x=0; y=0; p =0;p =0 and B =- p,(s) result in the following conditions:
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Hints:
1. Use condition A| =0 with
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or in the differential form
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2. Keep only necessary (i.e. relatively low order) terms in expansion of vector potentials.
Solution: Start from the Hamiltonian
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and equations of motion:
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we get rather trivial expression for coordinates derivatives:
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where we use A = ( to arrive to first two equations, E, (s) -
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more of work. Let’s keep term(s) that do not vanish at the limit of the reference orbit and

=0, P

13

and
f

ref ref

= p,(s) to arrive to obvious v (s)= a’—s Three other conditions require just a little bit
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reference particle ins square brackets [...]. Let’s start from d—‘: differentiation on x (where
S

most of the terms are turned into zero at the reference orbit, except o ¢ and d _A,) we have
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Let’s first look at terms colored in red and prove that they are just a boring zero at the reference

orbit:
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and we need expressions for potentials
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with a simple consideration that derivatives of potentials containing any power of x higher than
one will be zero at reference orbitL
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gives us connection between curvature of the reference orbit that components of electric and
magnetic fields:
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Second transverse coordinate:
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where we eliminated terms in red as zeros at the reference orbit with the remaining need of two
field components
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to arrive to “absence of curvature” in y direction:
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Finally, let’s look at evolution of Hamiltonian of the reference particle:
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which can be transferred using H = E +e@ and dg,(s,t,(s)) = 99, ds + Ip, _ds
Js ot v (s)

into the energy

gain of the reference particle along is trajectory:
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Problem 2: Trace and determinant. 4 points
Solution of any linear n-dimensional differential equation
X
9X _p(s)x
ds
can be expressed in a form of transport matrix
X(s)=M(s)X,; X,=X(s=0)
with
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where I is unit nxn matrix. Prove that

det(M(s))= exp(jTrace(D(C))dC].

Hints:

1. Prove first that
d

d—detM =Trace(D)-detM
s

2. Use infinitesimally small step in eq. (1) to conclude that
dM(s)=D(s)M(s)ds + O(dsz) = M(s+ds)=(I+D(s)ds)-M(s)+ O(dsz);
detM(s+ds)= det(I+D(s)ds) -detM(s)+ O(dsz) - (1)

1 d(detM) _det(I+D(s)ds)-1
detM ds ds ’




3. What remained is to prove us that

det(I+€D)=1+¢-Trace[D]+0(€)
where ¢ is infinitesimally small real number and term 0(82) contains second and higher orders

of €.

4. First, fist look on the product of diagonal elements H(l +ea,,) in det[l + SA]iH the

m=1

first order of €. Then prove that contributions to determinant from non-diagonal terms
a,, k#mis 0(32) or higher order of €. Itis possible to do it directly for an arbitrary

nxn matrix, or start from n=1 and use induction from »n to n+1.

Solution: Fist, let’s assume that det(I+eD)=1+ ¢ Trace[D]+ 0(82 ), then

det(I+ Dds) =1+ TraceDds; M(O) =I- detM(O) =1;
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Just for fun. let’s use induction. For n=1 we have
det(1+&d,)=1+ed,;0(&")=0 4)
For n=2
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Let’s assume that for nxn matrix our ration is correct
det(L,, +£D,,)=1+¢TraceD,,, +O(*) (6)
and add element to expand to (n+1)x(n+1):
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The blue term is easy to evaluate
(1+&d,,,,)det(1,, +eD,,)=(1+¢d,, . )(1+eTraceD,, + O(¢)) =
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1+ S(TraceDm +d, 0 ) + 0(82 ) =1+ €TraceD 0(82 )
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Part of the determinant containing &d or &d, ., with k#n+1 eliminated two noninfinite

n+l.k k.n+l

components 1+ &d, and 1+é&d Since this part of the determinant contain the product

n+l,n+1°

contains n+/ elements, and only maximum #n-/ of them are not infinitesimal, it means that its
lowers power is g”. Hence, all this terms can be neglected when g—>0.

Munch more simple and straightforward is this prove:
The contribution to determinant from the diagonal elements is

ﬁ(l+8amm)=l+£zn:amm+0(82):1+8~Trace[A]+0(82) (1)
m=1 m=1

A generic term containing a non-diagonal element q, ;k # m, excludes from the product at least
two diagonal elements 1+e&a, and 1+&q,,.
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Since the total number of elements in the product is n, such term contains at least two non-
diagonal elements, each of which contains &. This proves that non-diagonal terms can contribute

only second and higher order term into 0(82).

Problem 3: Proving solutions of Vlasov and Fokker-Plank equation. 15 points

Part 1. 5 points. Prove that for uncoupled vertical oscillations
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the phase space distribution
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with an arbitrary differentiable f (§ ) and beam envelope
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satisfied Vlasov equation:
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Part 2. 10 points. Prove that phase space distribution

F(y,y’,S)=f(§)=c-e><p(—é]; (5)

satisfies phase-averaged Fokker Plank equation:

y”=0. 4)

Hint: Use well-known and equations (1) and (3) to prove (4)
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for uncoupled vertical oscillations with additional damping terms and random noise (diffusion)

d dy’ , v
d—i—y ; =)” l(s)y—f(s)y+v(s)~§rndi-5(s—si);siG(O,C) o

<rnd> = 0;<rnd2> =1
| o w)
with constant emittance g=22 _ /.

2(¢)
OF 9F , 9F

Step 1: First, eliminate fast oscillating terms using eq. (4): —=——y"—

o5 ay oy
Step 2: Evaluate three diffusion coefficients

D, =ting{ufs +5)uls)) oo+ £)- (o)

=0 T
Show that D, =0 by finding that ( (s + 1) (s)) ~ 12, and that < Dyy,> =0, when averaging is
taken of the random kicks with < g( ¥, y’) -rnd > = g( v, y’) . <rnd> =0. Finally, calculate < Dy,y >

using following manipulations:

y’(s+7)=y’(s)+K(S*)y(s*)+ 2 l)(si)-rndi; s*e{s,s+1}

sie{s,ﬁf}

Show that after averaging over random kick strength, the only non-zero term originates only
2
from square of the random kicks ( Z U(S,-) . rndl.] - 2 v’ (Si) . <rnd,.2>
sie{s,s+7.'}
Here you need to use the fact stand random kicks are not correlated:

<rndl, -rnd_#l.> =0

sie{s,s-#‘r}
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to arrive to < Dy,y,> independent on y and y’, which allows you to take it out of %

Step 3: after completing all differentiations, use expression for y and y’

y= aw(s)-cosq); V' = a[w’(s)-cosq)— %(p)J
w(s

and average over betatron phases ¢ arrive to equation in form of

F(y,y',s) . g(ﬁ(s),w(s)Dy,y, (s),az,g) =0, which means that g=0.



Step 3: Assuming that g* ¢ (i.e. practically are constants!) are slow function compared with

g(s),w(s)DV,y,(s), average over the ring circumference to arrive to conclusion that

<DV'Y'W2 >
£ = ———"C satisfies the Fokker-Plank equation.
2(8).
Solution:
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Part one: Let’s differentiate one by one, take N outside of the bracket use, equation of motion

y” = ky, combine terms and find that they cancel each other to get pure zero:
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It is quate natural, because { = (wy’— W'y)z +(l] =a’ =inv, is invariant of motion, which
w

means that
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Part two: by adding friction and random kicks :
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we have some old and some new terms in the Fokker-plank equation:
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where can use previously found aa—F + or V- or K,y =0 to reduce it to
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Now it is time to calculate diffusion coefficients. Let’s start from easy one:
1 2 2
1 _ 1 I " — 0N
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where we used well known formular from math analysis:

y(s+ T)— y(s) = y’(s *) T,s* € {s,s+ T} .
Mixed term takes a bit more efforts because we need first find that

V(s+7)-y(s)= sz{v(s)-gmdi 8(z-s,)-K,(z)y- g(z)y'} =
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and recognizing that regular (non-random) term is ~ 7> and vanishes
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while mixed product vanishes because zero average value of random kicks <r”di>:0-

What is left is to calculate non-vanishing diffusion coeeficient

Dy,y, = 1iml(y'(s+f)—y'(s))2 = 1iml[reg-r—3iez v(sl.)~rndi] sreg = K(sl)y(sl)+§(sz)y’(sz)
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by eliminating regular term ~ 7?2, and product of the regular term with random kicks:
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<reg 2 ( )rndl.>=reg- 2 v(sl.)-<rndl.>=0.

The remaining term requres a llttle bit of work by recognizing that randdom kicks occuring in
different positions are uncorreltated and the only non-zero term comes from square of the kicks:
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where we instriduce average frequency of kisk % and their average RMS strenth <1)2 (s)> In

other words, this diffusion coefficient is completely defined by the frequency and strength of the
random kicks and does not depend on y and y’ — hence we can take is out from the differential:
g. a(y,F) + Dy'y’ 9'F =0
ay/ 2 ayfz :
Now we need to use specific expression for F:

F(y,y',s)zc-exp - ;

and calcuate the derivatives:
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combining the terms we get to

F , , w’ (wy —wy ’
F(f—D_, W_J__ 5(Wzy2_Wwyz)_Dy'y' ( 2¢e ) =0

(F&y)= Fé[l—%(wy’z —W’yy’)j;

where we need to introduce expressions for y and y
wy=a-ww’-cosp;, wy = a(w’ . cosq)-singo);wy’ —wWy=—a-sin@



and averrage ofve the betatron phases
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to get the desirable final product
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being either constabt or very slow variable, we must concluded that
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where we average both the product of diffusion coefficient with vertical B-function and the
decrement of the vertical oscillations over the circumference of the storage ring, C.
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