
HW1 Monday, January 30, 2023, HWs solutions: 
 
Problem 1: Reference particle and reference orbit. 6points 
Using accelerator Hamiltonian (M1.19), corresponding differential equations (M1.20), expansion 
of the vector and scalar potentials (M1.21), show that for a reference particle that is following a 
reference “trajectory”: 

,     

with  and  result in the following conditions: 
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;      (2) 

                 (3) 

.       (4) 

Hints:  
1. Use condition  with 
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or in the differential form  

    

2. Keep only necessary (i.e. relatively low order) terms in expansion of vector potentials. 
 
Solution: Start from the Hamiltonian  
 

  (4) 

and equations of motion: 
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we get rather trivial expression for coordinates derivatives: 
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where we use ,  to arrive to first two equations,  and  

 to arrive to obvious . Three other conditions require just a little bit 

more of work. Let’s keep term(s) that do not vanish at the limit of the reference orbit and 

reference particle ins square brackets […].  Let’s start from : differentiation on x (where 

most of the terms are turned into zero at the reference orbit, except  and ) we have 

 

Let’s first look at terms colored in red and prove that they are just a boring zero at the reference 
orbit: 
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with a simple consideration that derivatives of potentials containing any power of x higher than 
one will be zero at reference orbitL 

     

hence  

 

gives us connection between curvature of the reference orbit that components of electric and 
magnetic fields: 

.   (7)  

Second transverse coordinate: 
 

 

where we eliminated terms in red as zeros at the reference orbit with the remaining need of two 
field components   

 

to arrive to “absence of curvature” in y direction: 
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Finally, let’s look at evolution of Hamiltonian of the reference particle: 

 

which can be transferred using  and  into the energy 

gain of the reference particle along is trajectory: 

.  (9) 

Problem 2: Trace and determinant. 4 points 
 
Solution of any linear n-dimensional differential equation  

 

can be expressed in a form of transport matrix 
 

with  
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where I is unit nxn matrix. Prove that 
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3. What remained is to prove us that  
 

 

where  is infinitesimally small real number and term  contains second and higher orders 
of .  

4. First, fist look on the product of diagonal elements  in in the 

first order of . Then prove that contributions to determinant from non-diagonal terms
 is  or higher order of . It is  possible to do it directly for an arbitrary 

nxn matrix, or start from n=1 and use induction from n to n+1.  
 
Solution: Fist, let’s assume that , then  
 
 

 (3) 

Just for fun. let’s use induction. For n=1 we have  
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Part of the determinant containing  or  with k≠n+1 eliminated two noninfinite 
components and . Since this part of the determinant contain the product 
contains n+1 elements, and only maximum n-1 of them are not infinitesimal, it means that its 
lowers power is . Hence, all this terms can be neglected when . 
 
Munch more simple and straightforward is this prove: 
The contribution to determinant from the diagonal elements is  

   (1) 

A generic term containing a non-diagonal element , excludes from the product at least 
two diagonal elements  and . 

 

Since the total number of elements in the product is n, such term contains at least two non-
diagonal elements, each of which contains . This proves that non-diagonal terms can contribute 
only second and higher order term into .  
Problem 3: Proving solutions of Vlasov and Fokker-Plank equation. 15 points  
 
Part 1. 5 points. Prove that for uncoupled vertical oscillations  
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 (6) 
for uncoupled vertical oscillations with additional damping terms and  random noise (diffusion) 

  (7) 

with constant emittance .  

Step 1: First, eliminate fast oscillating terms using eq. (4): . 

Step 2: Evaluate three diffusion coefficients  
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Step 3: Assuming that  (i.e. practically are constants!) are slow function compared with 
, average over the ring circumference to arrive to conclusion that 

 satisfies the Fokker-Plank equation. 

Solution: 
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where can use previously found  to reduce it to  

 

Now it is time to calculate diffusion coefficients. Let’s start from easy one:  

 

where we used well known formular from math analysis:  
. 

Mixed term takes a bit more efforts because we need first find that  

 

and recognizing that regular (non-random) term is ~  and vanishes  

 

while mixed product vanishes because zero average value of random kicks =0.  
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∑ −τ K1 s1( ) y s1( )− ξ s2( ) ′y s2( )( );s1,2 ∈ s,s+τ{ }.

τ 2

Dy ′y =
τ→0
lim
1
τ
y s+τ( )− y s( )( ) ′y s+τ( )− ′y s( )( ) =

−
τ→0
lim ′y s*( ) ⋅ K s1( ) y s1( )+ ξ s2( ) ′y s2( )( )τ − υ si( ) ⋅rndi

si∈ s,s+τ{ }
∑

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ =

τ→0
lim ′y s*( ) ⋅ υ si( ) ⋅rndi

si∈ s,s+τ{ }
∑

⎛

⎝
⎜

⎞

⎠
⎟ ;

Dy ′y =
τ→0
lim ′y s*( ) ⋅ υ si( ) ⋅ rndi

si∈ s,s+τ{ }

N

∑
⎛

⎝
⎜

⎞

⎠
⎟ = 0;

rndi

Dy ' y ' =
τ→0
lim
1
τ

′y s+τ( )− ′y s( )( )2 =
τ→0
lim
1
τ
reg ⋅τ − υ si( ) ⋅rndi

si∈ s,s+τ{ }
∑

⎛

⎝
⎜

⎞

⎠
⎟

2

;reg = K s1( ) y s1( )+ ξ s2( ) ′y s2( )

Dy ' y ' =
τ→0
lim
1
τ
reg 2 ⋅τ 2 − 2reg ⋅τ υ si( ) ⋅rndi

si∈ s,s+τ{ }
∑ + υ si( ) ⋅rndi

si∈ s,s+τ{ }
∑

⎛

⎝
⎜

⎞

⎠
⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

τ 2



 

The remaining term requres a little bit of work by recognizing that randdom kicks occuring in 
different positions are uncorreltated and the only non-zero term comes from square of the kicks: 

 

where we instriduce average frequency of kisk  and their average RMS strenth . In 

other words, this diffusion coefficient is completely defined by the frequency and strength of the 
random kicks and does not depend on y and y’ – hence we can take is out from the differential: 

 

Now we need to use specific expression for F: 

 

and calcuate the derivatives: 

 

combining the terms we get to 

 

where we need to introduce expressions for y and y’: 
 

τ→0
lim
1
τ
reg ⋅τ( )2 = 0;

τ→0
lim
1
τ
reg ⋅τ( ) υ si( ) ⋅rndi

si∈ s,s+τ{ }
∑ = reg ⋅ υ si( ) ⋅rndi

si∈ s,s+τ{ }
∑

reg ⋅ υ si( ) ⋅rndi
si∈ s,s+τ{ }
∑ = reg ⋅ υ si( ) ⋅ rndi

si∈ s,s+τ{ }
∑ = 0.

Dy ' y ' =
τ→0
lim
1
τ

υ si( ) ⋅rndi
si∈ s,s+τ{ }
∑

⎛

⎝
⎜

⎞

⎠
⎟

2

=
τ→0
lim

υ si( )υ sj( ) ⋅rndi ⋅rnd j
j≠i
∑

i
∑

τ
+

τ→0
lim

υ 2 si( ) ⋅rndi2
si∈ s,s+τ{ }
∑

τ
;

rndi ⋅rnd j≠i = 0; Dy ' y ' =
τ→0
lim

υ 2 si( ) ⋅ rndi2
si∈ s,s+τ{ }
∑

τ
= N
C

υ 2 s( )
N
C

υ 2 s( )

ξ ⋅
∂ ′y F( )
∂ ′y

+
D ′y ′y

2
∂2F
∂ ′y 2 = 0.

F y, ′y ,s( ) = c ⋅exp −
w s( ) ′y − ′w s( ) y( )2 + y

w s( )
⎛

⎝
⎜

⎞

⎠
⎟

2

2ε

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

;

∂F
∂ ′y

= − Fw
ε
w ′y − ′w y( ); ∂

2F
∂ ′y 2 =

Fw2

ε 2
w ′y − ′w y( )2 − εw2{ };

∂
∂ ′y

Fξ ′y( ) = Fξ 1− w
ε
w ′y 2 − ′w y ′y( )⎛

⎝⎜
⎞
⎠⎟
;

F ξ − Dy ' y '
w2

2ε
⎛
⎝⎜

⎞
⎠⎟
− F
ε

ξ w2 ′y 2 −w ′w y2( )− Dy ' y ' w
2 w ′y − ′w y( )2

2ε

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0

′w y = a ⋅w ′w ⋅cosϕ; w ′y = a ′w ⋅cosϕ-sinϕ( );w ′y − ′w y = −a ⋅sinϕ



and averrage ofve the betatron phases  

 

to get the desirable final product 

. 

With  

. 

being either constabt or very slow variable, we must concluded that  

 

where we average both the product of diffusion coefficient with vertical β-function and the 
decrement of the vertical oscillations over the circumference of the storage ring, C. 

w2 ′y 2 −w ′w y2
ϕ
= a

2

2
;w2 ′y 2

ϕ
−w ′w y ′y

ϕ
= a

2

2

F 1− a
2

2ε
⎛
⎝⎜

⎞
⎠⎟

ξ − Dy ' y '
w2

2ε
⎛
⎝⎜

⎞
⎠⎟
= 0

a2

2ε
≅ const;F = f a2( ) ≅ const

ξ − Dy ' y '
w2

2ε
C

= 0⇒ ε = 1
2

Dy ' y ' s( )w2 s( )
C

ξ s( )
C

≡ 1
2

Dy ' y ' s( )β y s( )
C

ξ s( )
C


