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HW 1 (5 point): Let’s first determine an effective focal length, F, of the of a paraxial (e.g. 
small angles!) focusing object (a black-box) as ratio between a parallel displacement of 
trajectory at its entrance to corresponding change of the angle at its exit (see figure below): 

 

see figure below for  
 

 
For completeness, the distance from the entrance to the object to the trajectory crossing the 
axis, l, in general is not equal to the focal length. In beam optics this is frequently, but not 
correctly, referred as astigmatism – in contrast, the astigmatism is defined as dependence 
of the focal strengths on the direction of propagation of the ray (particle). 
Let consider a doublet of two thin lenses:  a focusing (F) and defocusing (D) lenses with 
equal but opposite in sign focal length F with center separated by distance L as in Fig. 1.  

 
Fig.1. Two combinations of a doublet: FD and DF. 

 
1. (3 points) Show through a calculation of the ray trajectory that the focal lengths of FD 
and DF doublets are equal and given by following expression: 
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2. (2 points) Determine location of the ray crossing the axis and find their difference 
between FD and DF doublets – this indeed would be an astigmatism of doublet built from 
two quadruples. 
 
P.S. Definition (picture) of thin lens: 

 
 

 
Solution: In both cases we start from initial conditions  

 
and apply following transformations: 

 

For FD case is gives us 
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with  being the position an the angle at the exit of the :black box”. The answer for 

the first question is coming from  for both FD and DF cases. 

The location of the ray crossing the z-axis coming from dividing the position at the exit of 
the second lens by the angle and adding L (distance from the starting point): 

    (3) 

Hence, the astigmatism of FD set is equal to 2F. 
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HW 2 (2 points): Spectral brightness (sometimes called brilliance) of a light source is 
defined as  
 

 

where  is the number of photons per second with the spectral bandwidth  

radiated from an area  into the solid angle  . The units used for brightness are 
expressed in photons per second  

 

 
As an exercise, calculate spectral brightness of NdYAG laser with average power of 10 
W, wavelength of λ=1.064 μm, Bandwidth of and with diffraction limited 
spot size and angular spread: 

 

 
Solution: First, lets calculate the frequency , the bandwidth and the photon energy  

 

 
Then the number of photons per second:  

 

The product of the area and he angular spread can be calculated for the diffraction limited 
laser beam as 

 
Hence, using three red numbers, the spectral brightness of this laser is  

B= 1.89 1022 ph/sec/mm2/mrad2/0.1%BW. 
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HW 3 (3 points): In a fixed Cartesian coordinates for a trajectory with of a particle 

moving in magnetic field  equation for its trajectory can be written in 
terms of z as independent variable: 
 

 

 
where e is the particle’s charge and  is its relativistic momentum. 
 
Hint: consider constants of motion in a magnetic field. 
 
Solution: Equation of motion with time as independent variable are: 
 

 

which with addition of the fact that energy is a integral of motion in magnetic field 
 yields: 

   (1) 

which we need to transfer to equation of motion with z as independent coordinate. We shall 
start from expressing dt ins term of dz: 

 

where we are using traditional for accelerator definition of dimensionless derivatives 
 Establishing rules for transformation for derivatives 
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we can rewrite (1) as 

   (2) 

with important note that because to the absolute value of the velocity is constant, one of 
these three equation is redundant!  We can easily resolve first two equations with respect 
to : 
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I suggest that you check for yourself this simple 2x2 matrix manipulations: 
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which gives the final result 

   (5) 

 
which differs from one given in the problem only by ordering of terms in the brackets and 
using SGS units – hence extra c in the denominator. 
Just as a sanity check, we check that third equation in (2) we had dropped is indeed 
redundant< Using expressions for  from (5)  

   

which is identical to the third equation in (2). No surprise here – it is a consequence of the 
constant velocity, momentum and energy. 
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