PHY 554. Homework 1.

Handed: September 6

Return by: September 13
Bring solution to class or send solutions to vladimir.litvinenko@stonybrook.edu
HW 1.1 (3 points): Find available energy (so called C.M. energy) for a head-on collision of electrons and protons in two electron-hadron collisions:
(a) CEBAF collides 12 GeV electrons with protons at rest (the rest energy of proton is 0.938257 GeV);
(b) LHeC ep plans to collide 60 GeV electrons with 7 TeV protons.

HW 2.1 (2 points): Electron ion collider (EIC) will be built in Brookhaven National Lab to collider 18 GeV electrons with 275 GeV protons and $100 \mathrm{GeV} / \mathrm{u}$ heavy ions. It will be located in RHIC tunnel with circumference of 3834 m .
(a) 1 point: What will be bending radius of 275 GeV protons in EIC dipole magnets with magnetic field of 3.8 T ?
(b) 1 point: What average magnetic field is required to turn 18 GeV electrons with the same radius?

HW 1.3 (2 points): For a classical microtron with orbit factor $\mathrm{k}=1$ and energy gain per pass of 1.022 MeV and operational RF frequency $1.5 \mathrm{GHz}\left(1.5 \times 10^{9} \mathrm{~Hz}\right)$ find required magnetic field. What will be radius of first orbit in this microtron?
Hint: Note that rest energy of electron with $\gamma=1$ is 0.511 MeV . This is energy gain per pass will define available n numbers in eq. (2.6)

HW 1.4 (5 point): Let's first determine an effective focal length, F, of a paraxial (e.g. small angles!) focusing object (a black-box) as ratio between a parallel displacement of trajectory at its entrance to corresponding change of the angle at its exit (see figure below):

$$
F=-\frac{x}{x^{\prime}} ; x^{\prime} \equiv \frac{d x}{d z}
$$

see figure below for

Let consider a doublet of two thin lenses: a focusing (F) and defocusing (D) lenses with equal but opposite in sign focal length F with center separated by distance L as in Fig. 1.
(a)

(b)

Fig.1. Two combinations of a doublet: $F D$ and $D F$.

1. (3 points) Show through a calculation of the ray trajectory that the focal lengths of $F D$ and $D F$ doublets are equal and given by following expression:

$$
F_{e f f}=\frac{F^{2}}{L}
$$

2. (2 points) The ray (trajectory) parallel to the axis is entering the FD or DF system of lenses. Using you calculation of the trajectories in $F D$ and $D F$ doublets, determine location of to the ray crossing the axis and find their difference between $F D$ and $D F$ doublets. Since a quadrupole focusing in horizontal plane is defocusing in vertical plane - and visa versa by solving this your find astigmatism of a doublet built from two quadrupoles, i.e. difference between locations of the focal planes for horizontal and vertical direction of motion.
P.S. Definition (picture) of thin lens:

(a)

(b)
