Home Work 19

1. (10 points)

The impedance of a resonator model can be related to a circuit shown above. Show the impedance of above circuit can be expressed as

$$
Z_{0, / /}=\frac{R_{s}}{1+i Q\left(\frac{\omega_{R}}{\omega}-\frac{\omega}{\omega_{R}}\right)}
$$

and find the expression for Q and ω_{R} in terms of C, R_{s}, and L.
2. (10 points) Perform a contour integral of $\frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega}$ in the complex ω^{\prime} plane over the upper half plane along the contour shown in the figure.

Show that if $Z_{/ /}\left(\omega^{\prime}\right)$ converges sufficiently fast as $\left|\omega^{\prime}\right| \rightarrow \infty$,

$$
\begin{equation*}
Z_{/ /}(\omega)=-\frac{i}{\pi} P \cdot V \cdot \int_{-\infty}^{\infty} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime} \tag{1}
\end{equation*}
$$

and eq. (1) leads to Kramers-Kronig relations.

$$
\begin{aligned}
& \operatorname{Re}\left[Z_{l /}(\omega)\right]=\frac{1}{\pi} P \cdot V \cdot \int_{-\infty}^{\infty} \frac{\operatorname{Im}\left[Z_{/ /}\left(\omega^{\prime}\right)\right]}{\omega^{\prime}-\omega} d \omega^{\prime} \\
& \operatorname{Im}\left[Z_{/ /}(\omega)\right]=-\frac{1}{\pi} P \cdot V \cdot \int_{-\infty}^{\infty} \frac{\operatorname{Re}\left[Z_{l /}\left(\omega^{\prime}\right)\right]}{\omega^{\prime}-\omega} d \omega^{\prime}
\end{aligned}
$$

