Synchrotron Radiation



What is synchrotron radiation

E field

Static field for a charge at rest ~ When a particle moves with a When a particle gets accelerated,

constant velocity, field moves S°™M€ part of the field moves away
with particle ' from the particle to infinity:

radiation.

The electromagnetic radiation emitted when charged particles are accelerated radially,
A | Vv, is called synchrotron radiation.



Some history of Synchrotron radiation

* Synchrotron radiation was named after its
discovery in Schenectady, New York from a
General Electric synchrotron accelerator
built in 1946 and announced in May 1947
by Frank Elder, Anatole Gurewitsch, Robert
Langmuir .

e Synchrotron radiation is the main constraint
to accelerate electrons to very high energy
and hence is bad for high energy physics
application, such as colliders.

e However, it was then realized that the
radiation can be so helpful for other
branches of science such as biology,
material science and medical applications.
As a result, dedicated storage rings have
been built to generate synchrotron
radiation, which are called light sources.




Application of Synchrotron Radiation
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Theoretical Model: wave equation

To better understand how the synchrotron radiation is quantitatively investigated, we will

try to derive formulas from ‘first principle’. (refer to ‘Accelerator physics’ by S.. Lee and
classical electrodynamics’ by J.D. Jackson)
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Laplace Transformation

The Laplace transform of the function f(x), denoted by F(s), is defined by the integral

F(s)=[e=f()dx  for Re(s)>0

The inversion of the Laplace transform is accomplished for analytic function F(s) by means
of the inversion integral*
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where Y is a real constant that exceeds the real part of all the singularities of F(s).
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*Note that the definition of inverse
Laplace transform implies causality,
i.e. f(x)=0 for x<0Q




Theoretical Model I: wave equation
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Theoretical Model Il: wave equation




Theoretical Model Ill: Solution for point charge (Lienard-
Wiechert Potential)
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Theoretical Model lll;: E&M field

The electric and magnetic field can be directly obtained from the
following relation (notice that t dependson ()?,t).
0

E(%1)=-V,0(Xt)- - A(XY) B(X,t)=V, xA(Xt)
dt, _ 1 T n(t) d i A(t)e o A(L)
dt  1-A(t, ) B(t,) c[1-(n(t)-B(t,))] ER(tr)_l—ﬁ(tr)-B(tr) VXR(tr)_l—ﬁ(tr)ﬂ(tr)

Note: Jackson follows a different

A E()?,t) appranh but directly taking
derivatives generate the same result.




Radiation Power |

Taking the radiation part of the field

L e m[(A)-B))xA()]

e R(L)[1-A()-A(L)]
and the energy flow is determined by the Poynting vector
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The radiated power per solid angle is then given by
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Time interval difference between radiation and observation. See the next slide




Time interval at radiation point and
the observation point
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Radiation Power Il
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Note: Jackson uses Lorentz transformation to derive this from non-relativistic
result. Here, we take a more tedious but straightforward approach.
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Parallel acceleration (Linac)

O > -
ﬁ:/}:%/} v = fic
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P(t) 2 dE/dx mc®  0.55MeV _1.9x]0 MeV
dE/dt 38 mc’/r, r,  28:10°m m

The state of art accelerating rate at the moment is below 100 MeV/m and hence
synchrotron radiation is negligible in linear accelerators.




Circular orbit
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Compare parallel with perpendicular
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Angular distribution (Circular orbit)
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Angular distribution
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* These plots show how the length of a vector, r, depends on its

as the power, we can see the angular distribution of power by looking r=

at the length of the vector along all directions. (Spherical 3D plot in
Mathematica)
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Spectrum

The power per solid angle at the observation time reads

P (19RO =B (RORE)

In order to get the frequency contents of the radiation, or the spectrum, we need to do
Fourier transformations.
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Spectrum II

To proceed, we need to calculate the Fourier components of the
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Polarization of electric field is

decomposed into
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Spectrum IV

Critical frequency
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Yy Spectrum
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* The total energy spectrum is obtained by integrating over the

solid angle:
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A more concise and popular
expression for the energy
spectrum:
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