Home Work PHY 554 \#10. Handed October 10, Due October 17, 2018

HW 1 (2 points): Calculate relations between three dimensionless infinitesimal parameters:

$$
\frac{d E}{E} \equiv \frac{d \gamma}{\gamma} ; \frac{d p}{p} \equiv \frac{d(\beta \gamma)}{\beta \gamma} ; \frac{d \mathrm{v}}{\mathrm{v}} \equiv \frac{d \beta}{\beta}
$$

where E is energy, p is momentum and v is velocity of a particle. Hint: use relativistic relations between β and γ.

Solution: The easiest way is to use the following

$$
\begin{gathered}
\beta^{2}=1-\gamma^{-2} \rightarrow \beta d \beta=\gamma^{-3} d \gamma \\
\frac{d \mathrm{v}}{\mathrm{v}}=\frac{d \beta}{\beta}=\frac{1}{\beta^{2} \gamma^{2}} \frac{d \gamma}{\gamma}=\frac{1}{\beta^{2} \gamma^{2}} \frac{d E}{E} \\
E^{2}=\mathrm{p}^{2} c^{2}+m^{2} c^{4} \rightarrow E d E=c^{2} \mathrm{pdp} \\
\frac{d p}{p}=\frac{E^{2}}{\mathrm{p}^{2} c^{2}} \frac{d E}{E} \equiv \frac{1}{\beta^{2}} \frac{d E}{E} \\
\frac{d \mathrm{v}}{\mathrm{v}}=\frac{1}{\gamma^{2}} \frac{d p}{p}
\end{gathered}
$$

HW 2 (5 points): In class we introduced the map of longitudinal motion in a storage ring

$$
\begin{gather*}
\delta_{n+1}=\delta_{n}+\frac{e V_{r f}}{\beta^{2} E_{o}}\left(\sin \phi_{n}-\sin \phi_{s}\right) ; \tag{1}\\
\phi_{n+1}=\phi_{n}+2 \pi h \eta \cdot \delta_{n+1},
\end{gather*}
$$

1. For small oscillation variations of the RF phase about the synchronous phase

$$
\varphi=\phi-\phi_{s} ;|\varphi| \ll 1
$$

linearize the map (1) by keeping only first order on φ and find one turn transport matrix M for longitudinal motion:

$$
\binom{\varphi}{\delta}_{n+1}=M\binom{\varphi}{\delta}_{n}
$$

Solution: linearization is straight forward

$$
\begin{gather*}
\sin \phi_{n}=\sin \phi_{s}+\varphi_{n} \cos \phi_{s}+O\left(\varphi_{n}^{2}\right) \\
\delta_{n+1} \cong \delta_{n}+\frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} \varphi_{n} \tag{1}\\
\varphi_{n+1}=\varphi_{n}+2 \pi h \eta \cdot \delta_{n+1}=2 \pi h \eta\left(\delta_{n}+\frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} \varphi_{n}\right)
\end{gather*}
$$

and giving us desirable one turn matrix

$$
\begin{align*}
\binom{\varphi}{\delta}_{n+1} & =\left(\begin{array}{cc}
1+2 \pi h \eta \frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} & 2 \pi h \eta \\
\frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} & 1
\end{array}\right)\binom{\varphi}{\delta}_{n} \tag{2}\\
M & =\left(\begin{array}{cc}
1+2 \pi h \eta \frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} & 2 \pi h \eta \\
\frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} & 1
\end{array}\right)
\end{align*}
$$

2. Using Courant-Snyder parametrization we used for transverse motion find value of $\cos \mu_{s}, \beta_{s}, \alpha_{s} \quad$ in parametric form (e.g. using $\sin \mu_{s}=\sqrt{1-\cos ^{2} \mu_{s}} \quad$, $\mu_{s}=2 \pi Q_{s}=\cos ^{-1}\left(\cos \mu_{s}\right)$).
Solution:

$$
\begin{gather*}
M=\left(\begin{array}{cc}
1+2 \pi h \eta \frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} & 2 \pi h \eta \\
\frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} & 1
\end{array}\right)=\left(\begin{array}{cc}
\cos \mu_{s}+\alpha_{s} \sin \mu_{s} & \beta_{s} \sin \mu_{s} \\
\gamma_{s} \sin \mu_{s} & \cos \mu_{s}-\alpha_{s} \sin \mu_{s}
\end{array}\right) \\
A=\pi h \eta \frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} ; \cos \mu_{s}=\frac{1}{2} \operatorname{Trace} M=1+A \tag{2}\\
\sin \mu_{s}=\sqrt{-2 A-A^{2}} ; \alpha_{s}=\frac{A}{\sqrt{-2 A-A^{2}}} ; \beta_{s}=\frac{2 \pi h \eta}{\sqrt{-2 A-A^{2}}}
\end{gather*}
$$

Motion is stable when $A(2+A)<0 ;-2<A<0$. We derived first $\mathrm{A}<0$ condition in our class. Second condition A>-2 ;protest from never observed over-focusing by RF cavity... 3. Assuming that $\mu_{s} \ll 1$, find analytical expression for synchrotron tune and compare it with that we found in Lecture 12:
Solution: for $\mu_{s} \ll 1$

$$
\begin{gathered}
\cos \mu_{s}=1-\frac{\mu_{s}^{2}}{2}+O\left(\mu_{s}^{4}\right)=1+2 \pi h \eta \frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}} ; \\
\mu_{s}=\sqrt{-2 \pi h \eta \frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}}} ; Q_{s}=\frac{\mu_{s}}{2 \pi}=\sqrt{-\frac{h \eta}{2 \pi} \frac{e V_{r f} \cos \phi_{s}}{\beta^{2} E_{o}}}
\end{gathered}
$$

with synchrotron tune, naturally, identical to that derived in Lecture 12 when $\eta \cos \phi_{s}<0$.

HW 3 ($\mathbf{3}$ points): (4 points) For our example in lecture 12, find the synchrotron tunes for 100 GeV and 15 GeV protons in a storage ring for the following parameters (similar to RHIC collider at BNL):
RF voltage,

$$
\mathrm{V}=500 \mathrm{kV}
$$

Depending on the sing of the slip facor the synonymous phase is zero or 180 degrees,

$$
\phi_{s}=0, \pi-\text { it is also called zero crossing }
$$

Harmonic number,

$$
\begin{aligned}
& \mathrm{h}=360 \\
& \alpha_{\mathrm{c}}=0.002
\end{aligned}
$$

Compaction factor,

Solution: for zero crossing $\sin \phi_{s}=0$ and proper sign $\eta \cos \phi_{s}<0$ we haev

$$
Q_{s}=\sqrt{\frac{h|\eta|}{2 \pi} \frac{e V_{r f}}{\beta^{2} E_{o}}}
$$

where we should add relation between compaction and slip factors:

$$
\eta=\alpha_{c}-\frac{1}{\gamma^{2}}
$$

The rest requires to know the rest mass of proton which is 0.9382720 GeV . The rest is just crunching the numbers:

Energy, GeV	15	100
γ	15.987	106.579
β	0.9980	1.0000
$\mathrm{~V}, \mathrm{GeV}$	0.0005	0.0005
h	360	360
$\alpha \mathrm{c}$	0.002	0.002
η	-0.00191	0.00191
Qs	0.00191	0.00074

