Homework 17
Problem 1. 20 points. 1D emittance
For an ensemble or a distribution function of particles 1D geometrical emittance is

defined as
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1. Show that the emittance is invariant to a Canonical linear (symplectic matrix)

transformation of
y/ = M y/
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Note: use the fact that gyz =detX; X = ) :and find transformation rule for
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the X matrix.
2. For one-dimensional betatron (y) distribution find components of eigen vector wy and
w’y generating a given (positively defined)
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This operation is called matching the beam into the beam-line optics.
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Solution.
Problem 1. (1) Let’s prove that
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by observing that
X, = <Xin>;
$,=5,=(XX)=(M, XXM, )=
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(where we use the fact that one can extract constants from the averaging brakets) which
in matrix form is equivalent to
L=MzM’
The rest is easy since det M =1:

detE =detM detXdetM" =detX
Shorter proof: T=X®X" »E=X®X =M - XX -M" =M -X-M" #



(2) Let’s remember that
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and calculate averages using randomness of particles’ phases

<0052 1//y> - %;<Coswy sinwy> <sm v, >

<y2> <aw cos l//)> W, =

2 >’T
2 2
{yy >—<a w coswy(w cosy, —W—sm% j> W <a2>=—ay <az>;
2 1 2 2 1
(y*)=(a [w cosy, —Wiysmwj = +(Wy2 ) <a2>: +ﬁ(jy .
B, a,

2 ’
T= <y> ) =€, 1+

) O | 7| e B

Thus, for 1D case it one can use this relation to design matched lattice for a given X
matrix of the beam — for example at injection point into a storage ring. This matching
minimizes RMS amplitudes of particles oscillation in the storage ring.



