Complex Analysis Refresher

Jun Ma

Center for Accelerator Science and Education Collider-Accelerator Department, Brookhaven National Laboratory Department of Physics & Astronomy, Stony Brook University

Septermber 28, 2023

Definition

$$i = \sqrt{-1}$$
 $w = x + iy = (x, y), w \in \mathbb{C}, (x, y) \in \mathbb{R}^2$
 $x = \text{Re } w, y = \text{Im } w$
 $(a+ib) + (c+id) = (a+c) + i(b+d)$
 $k(a+ib) = ka + ikb$
 $(a+ib)(c+id) = ac + iad + ibc + i^2bd = (ac - bd) + i(ad + bc)$

Polar Representation of Complex Numbers

$$z = a + ib = r\cos\theta + i(r\sin\theta) = r(\cos\theta + i\sin\theta)$$

 $|z| = r = \sqrt{a^2 + b^2}$ is called norm, or modulus, or absolute value of z .
 $\theta = \arg z$ is called the argument of z .

Multiplication of Complex Numbers in Polar Representation

$$z_{1} = r_{1}(\cos\theta_{1} + i\sin\theta_{1})$$

$$z_{2} = r_{2}(\cos\theta_{2} + i\sin\theta_{2})$$

$$z_{1}z_{2} = r_{1}r_{2}[(\cos\theta_{1}\cos\theta_{2} - \sin\theta_{1}\sin\theta_{2}) + i(\cos\theta_{1}\sin\theta_{2} + \cos\theta_{2}\sin\theta_{1})]$$

$$= r_{1}r_{2}[\cos(\theta_{1} + \theta_{2}) + i\sin(\theta_{1} + \theta_{2})]$$

$$|z_{1}z_{2}| = |z_{1}| \cdot |z_{2}|, \arg(z_{1}z_{2}) = \arg z_{1} + \arg z_{2}(\mod 2\pi)$$

$$z^{n} = r^{n}(\cos n\theta + i\sin n\theta), n \text{ is a positive integer}$$

$$w^{n} = z = r(\cos\theta + i\sin\theta),$$

$$w = \sqrt[n]{r}\left[\cos\left(\frac{\theta}{n} + \frac{k}{n}2\pi\right) + i\sin\left(\frac{\theta}{n} + \frac{k}{n}2\pi\right)\right]$$

$$k = 0, 1, 2, \dots, n - 1$$

Complex Conjugation

$$z = a + ib, \bar{z} = a - ib$$

$$\overline{z + z'} = \bar{z} + \bar{z'}$$

$$\overline{zz'} = \bar{z}\bar{z'}$$

$$\overline{z/z'} = \bar{z}/\bar{z'} \text{ for } z' \neq 0$$

$$z\bar{z} = |z|^2$$

$$z = \bar{z} \text{ if and only if } z \text{ is real}$$

$$Re \ z = (z + \bar{z})/2, Im \ z = (z - \bar{z})/2i$$

$$\bar{z} = z$$

Some Elementary Functions

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$e^{iy} = 1 + \frac{(iy)}{1!} + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \cdots$$

$$= \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \cdots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!} - \cdots\right)$$

$$= \cos y + i \sin y$$

Some Elementary Functions

$$e^{z} = e^{x+iy} = e^{x}(\cos y + i \sin y)$$

$$e^{z+w} = e^{z}e^{w}$$

$$e^{z} \quad \text{is never zero}$$

$$|e^{x+iy}| = e^{x}$$

$$e^{i\pi/2} = i, e^{i\pi} = -1, e^{i3\pi/2} = -i, e^{i2\pi} = 1$$

$$e^{z} \quad \text{is periodic, each period has the form } i2\pi n, \text{ for some integer } n$$

$$e^{z} = 1 \text{ if and only if } z = i2\pi n$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

Logarithm Function

 $A_{y_0} = \{x + iy | x \in \mathbb{R}, y_0 \le y < y_0 + 2\pi\}, e^z \text{ maps } A_{y_0} \text{ in a one-to-one manner onto the set } \mathbb{C} \setminus \{0\}$

The function $\log : \mathbb{C} \setminus \{0\} \to \mathbb{C}$, with range $y_0 \leq \text{Im } \log z < y_0 + 2\pi$, is defined by

$$\log z = \log|z| + i \arg z$$

where arg z takes values in the interval $[y_0, y_0 + 2\pi)$.

$$\sqrt[n]{z} = z^{1/n} = e^{(\log z)/n}$$

Geometry of some functions

Functions

• Open sets, closed sets, connected sets, compact sets, point at infinity, Riemann sphere **S**, $\bar{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

- Functions on $\mathbb{C} \to \mathbb{C}$ can be written as f(z) = f(x + iy) = u(x, y) + iv(x, y), where u(x, y) = Re f(z) and v(x, y) = Im f(z).
- Limit, continuity, uniform continuity
- Extreme value theorem: Continuous function on a compact set attains finite maximum and minimum values.

Analytic Functions

Function f is said to be differentiable (in the complex sense) at $z_0 \in A(A \subset \mathbb{C})$ if

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

exists. f is said to be analytic (or holomorphic) on A if f is complex differentiable at each $z_0 \in A$.

$$(af + bg)'(z) = af'(z) + bg'(z)$$

$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

$$\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - g'(z)f(z)}{[g(z)]^2}$$

$$\frac{d}{dz}(g \circ f)(z) = g'(f(z)) \cdot f'(z) \text{ (Chain Rule)}$$

Cauchy-Riemann Theorem: $f'(z_0)$ exists if and only if f is real differentiable

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Analytic Functions

Inverse Function Theorem:

$$\frac{d}{dw}f^{-1}(w) = \frac{1}{f'(z)} \text{ where } w = f(z)$$

Harmonic:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

If f = u + iv is analytic, then u and v are hormonic, u and v are harmonic conjugates. For example,

$$u(x,y) = x^2 - y^2, v(x,y) = 2xy$$

Differentiation of Elementary Functions

$$\frac{de^z}{dz} = e^z$$

$$\frac{d}{dz} \log z = \frac{1}{z}$$

$$\frac{d}{dz} \sin z = \cos z$$

$$\frac{d}{dz} \cos z = -\sin z$$

$$\frac{d}{dz} a^z = (\log a)a$$

$$\frac{d}{dz} z^b = bz^{b-1}$$

Contour Integrals

A curve or contour $\gamma:[a,b]\to\mathbb{C}$, smooth, piecewise C^1 , discontinuous.

 $\int_{\gamma} f = \int_{\gamma} f(z) dz = \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} f(\gamma(t)) \gamma'(t) dt$ is called the integral of f along γ .

$$f(z) = u(x,y) + iv(x,y)$$

$$f(\gamma(t)\gamma'(t)) = [u(x(t),y(t))x'(t) - v(x(t),y(t))y'(t)]$$

$$+i[v(x(t),y(t))x'(t) + u(x(t),y(t))y'(t)]$$

$$f(z)dz = (u+iv)(dx+idy) = udx - vdy + i(vdx + udy)$$

$$|\int_{\gamma} f| \leq \int_{\gamma} |f||dz|$$

Jun Ma (CASE) Complex Analysis September 28, 2023

Fundamental Theorem of Calculus

 $\gamma:[0,1] \to \mathbb{C}$ is a piecewise smooth curve.

F is a function defined and analytic on an open set G containing γ .

$$\int_{\gamma} F'(z)dz = F(\gamma(1)) - F(\gamma(0))$$
$$\int_{\gamma} F'(z)dz = 0 \text{ if } \gamma(0) = \gamma(1)$$

Integrals are path-independent.

Integrals around closed curves are 0.

An examle: let γ be the circle of radius r around $a \in \mathbb{C}$, n is an integer,

$$\int_{\gamma} (z-a)^n dz = 0, n \neq -1 2\pi i, n = -1$$

Cauchy's Theorem

 γ is a simple closed curve (γ intersects itself only at its endpoint). f is analytic on and inside γ

$$\int_{\gamma} f = 0$$

Green's Theorem

$$\int_{\gamma} P(x,y)dx + Q(x,y)dy = \int \int_{A} \left[\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dxdy$$

Suppose f is analytic on and inside a simple closed curve γ

$$\int_{\gamma} f = \int_{\gamma} f(z)dz = \int_{\gamma} (u+iv)(dx+idy)$$

$$= \int_{\gamma} (udx - vdy) + i \int_{\gamma} (udy + vdx)$$

$$= \int_{A} \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dxdy + i \int_{A} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dxdy$$

$$= 0 \text{ (Cauchy-Riemann equations)}$$

Jun Ma (CASE) Complex Analysis September 28, 2023 16 / 49

Deformation Theorem

f is analytic on a region A, γ is a simple closed curve in A. If γ can be continuously deformed to another simple closed curve $\tilde{\gamma}$ without passing outside the region A (γ is homotopic to $\tilde{\gamma}$ in A), then

$$\int_{\gamma} f = \int_{\tilde{\gamma}} f$$

Deformation Theorem

$$0 = \int_{\gamma + \gamma_0 - \tilde{\gamma} - \gamma_0} f = \int_{\gamma} f + \int_{\gamma_0} f - \int_{\tilde{\gamma}} f - \int_{\gamma_0} f = \int_{\gamma} f - \int_{\tilde{\gamma}} f$$

Simply Connected Regions

A is called simply connected if A is connected and every closed curve γ in A can be deformed in A to some constant curve $\tilde{\gamma}=z_0$.

 $\int_{\gamma} f = 0,$ if f is analytic on a simply connected region G and γ is a closed curve in G.

Independence of Path

f is analytic on simply connected region A, γ_1 and γ_2 are two curves joining two points z_0 and z_1 in A,

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

Antiderivative Theorem

f is analytic on simply connected region A. Then there is an analytic function F defined on A that is unique up to an additive constant, such that F'(z) = f(z), F is the antiderivative of f on A.

$$F_0(z) = F(z) + C$$

 $(F_0 - F)'(z) = F'_0(z) - F'(z) = f(z) - f(z) = 0$

A is a simply connected region and $0 \notin A$. Then there is an analytic function F(z), unique up to the addition of multiples of $2\pi i$, such that $e^{F(z)} = z$. We write $F(z) = \log z$ and call F a branch of the logarithm function.

$$e^{F(z)}=z, e^{G(z)}=z$$
 $e^{F(z)-G(z)}=1$ $F(z_0)-G(z_0)=2\pi ni$ for some integer n at fixed z_0

Jun Ma (CASE)

Complex Analysis

September 28, 2023 21 / 49

Index of a Closed Path

$$I(\gamma; z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

 $I(\gamma; z_0)$ is the index of γ with respect of z_0 . We say that γ winds around z_0 , $I(\gamma; z_0)$ times.

 $\gamma(t)=z_0+re^{it}, 0\leq t\leq 2\pi n$ has index n with respect to z_0 , $-\gamma(t)=z_0+re^{-it}, 0\leq t\leq 2\pi n$ has index -n with respect to z_0 . γ and $\tilde{\gamma}$ are homotopic in $\mathbb{C}\setminus\{z_0\}$, z_0 does not lie on either γ or $\tilde{\gamma}$, then $I(\gamma;z_0)=I(\tilde{\gamma};z_0)$

◆ロト ◆昼 ト ◆ 豊 ト ・ 豊 ・ 釣 ९ (*)

Cauthy's Integral Formula

$$f(z_0) \cdot I(\gamma; z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

When γ is a simple closed curve and $I(\gamma; z_0) = 1$, then

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

Example: $\int_{\gamma} \frac{e^z}{z} dz = 2\pi i \cdot e^0 = 2\pi i$ by choosing $f(z) = e^z$ and $z_0 = 0$. Cauthy's Integral Formula for Derivatives:

$$f^{(k)}(z_0) \cdot I(\gamma; z_0) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz, k = 1, 2, 3, ...$$

Cauchy's Inequalities and Liouville's Theorem

Cauchy's Inequalities: f is analytic on a region A, γ is a circle with radius R and center z_0 . Suppose $|f(z)| \leq M$ for all z on γ , then for k = 0, 1, 2, ...

$$|f^{(k)}(z_0)| \leq \frac{k!}{R^k}M$$

Liouville's Theorem: f is entire and $|f(z)| \leq M$ for all $z \in \mathbb{C}$, then f is constant.

Cauchy Inequalities with k=1, $|f'(z_0)| \leq M/R$. Hold z_0 and let $R \to \infty$, we have $|f'(z_0)| = 0$ and therefore $f'(z_0) = 0$ for every $z_0 \in \mathbb{C}$.

Mean Value Property

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

$$\gamma(\theta)=z_0+re^{i\theta}, 0\leq\theta\leq 2\pi$$

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

$$= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} rie^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

Poisson's Formula

Mean Value Property for Harmonic Functions:

$$u(x_0, y_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$

Poisson's Formula real form:

$$u(\rho e^{i\phi}) = \frac{r^2 - \rho^2}{2\pi} \int_0^{2\pi} \frac{u(re^{i\phi})}{r^2 - 2r\rho\cos(\phi - \theta) + \rho^2} d\theta$$

Poisson's Formula complex form:

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) \frac{r^2 - |z|^2}{|re^{i\theta} - z|^2} d\theta$$

Series Representation

Taylor's series:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Laurent series:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, n = 0, 1, 2, ...$$

$$b_n = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) (\zeta - z_0)^{n+1} d\zeta, n = 1, 2, ...$$

Isolated Singularities

$$f(z) = ... + \frac{b_n}{(z-z_0)^n} + ... + \frac{b_1}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + ...$$

If f is analytic on $\{z | 0 < |z - z_0| < r\}$, z_0 is an isolated singularity of f

- A finite number of b_n are zero, z_0 is called a pole of f. k is the highest integer such that $b_k \neq 0$, z_0 is a pole of order k. A first-order pole is a simple pole.
- An infinite number of b_k are nonzero, z_0 is an essential singularity.
- b_1 is the residue of f at z_0 .
- All the b_k are zero, z_0 is a removable singularity.

$$\int_{\gamma} f(z)dz = b_1 \cdot 2\pi i$$

Jun Ma (CASE)

Isolated Singularities

 z_0 is a removable singularity if and only if one of the following conditions holds:

- f is bounded in a deleted neighborhood of z_0
- $\lim_{z\to z_0} f(z)$ exists
- $\lim_{z \to z_0} (z z_0) f(z) = 0$

 z_0 is a simple hole if and only if $\lim_{z\to z_0}(z-z_0)f(z)$ exists and is unequal to zero. This limit equals the residue of f at z_0 .

f and g have zeros of order n and k respectively at z_0 . h(z) = f(z)/g(z):

- if k > n, h has a pole of order k n at z_0 .
- if k = n, h has a removable singularity with nonzero limit at z_0 .
- if k < n, h has a zero of order n k at z_0 .

Residues

$$f(z) = ... + \frac{b_2}{(z - z_0)^2} + \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + ...$$

$$b_1 = Res(f; z_0)$$

f(z) = g(z)/h(z): If g and h have zeros at z_0 of the same order, f has a removable singularity at z_0 , $Res(f; z_0) = 0$.

If $g(z_0) \neq 0$, $h(z_0) = 0$, $h'(z_0) \neq 0$, f has a simple pole at z_0 ,

$$Res(f; z_0) = \frac{g(z_0)}{h'(z_0)}.$$

If g has a zero of order k at z_0 and h has a zero of order k+1, then f has a simple pole, $Res(f; z_0) = (k+1) \frac{g^{(k)}(z_0)}{h^{k+1}(z_0)}$.

If $g(z_0) \neq 0$, $h(z_0) = 0$, $h'(z_0) = 0$, $h''(z_0) \neq 0$, f has a second-order pole at z_0 , $Res(f; z_0) = 2 \frac{g'(z_0)}{h''(z_0)} - \frac{2}{3} \frac{g(z_0)h'''(z_0)}{[h''(z_0)]^2}$.

- 4 ロ ト 4 個 ト 4 直 ト 4 直 ・ 夕 Q ()

High-Order Poles

k is the smallest integer ≥ 0 such that $\lim_{z\to z_0}(z-z_0)^k f(z)$ exists. Then f has a pole of order k. Let $\phi(z)=(z-z_0)^k f(z)$

$$Res(f; z_0) = \frac{\phi^{(k-1)}(z_0)}{(k-1)!}$$

 $g(z_0) \neq 0, h(z_0) = 0 = ... = h^{(k-1)}(z_0), h^{(k)}(z_0) \neq 0$, then g/h has a pole of order k

$$\begin{split} \operatorname{Res}(g/h;z_0) &= \left[\frac{k!}{h^{(k)}(z_0)}\right]^k \times \\ &= \begin{bmatrix} \frac{h^{(k)}(z_0)}{k!} & 0 & 0 & \dots & 0 & g(z_0) \\ \frac{h^{(k+1)}(z_0)}{(k+1)!} & \frac{h^{(k)}(z_0)}{k!} & 0 & \dots & 0 & g^{(1)}(z_0) \\ \frac{h^{(k+2)}(z_0)}{(k+2)!} & \frac{h^{(k+1)}(z_0)}{(k+1)!} & \frac{h^{(k)}(z_0)}{k!} & \dots & 0 & \frac{g^{(2)}(z_0)}{2!} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{h^{(2k-1)}(z_0)}{(2k-1)!} & \frac{h^{(2k-2)}(z_0)}{(2k-2)!} & \frac{h^{(2k-3)}(z_0)}{(2k-3)!} & \dots & \frac{h^{(k+1)}(z_0)}{(k+1)!} & \frac{g^{(k-1)}(z_0)}{(k-1)!} \\ \end{split}$$

Residue Theorem

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{i=1}^{n} [Res(f; z_i)] I(\gamma; z_i)$$

Residue at Infinity

$$F(z) = f(1/z)$$

f has a pole of order k at ∞ if F has a pole of order k at 0; f has a zero of order k at ∞ if F has a zero of order k at 0. Define $Res(f;\infty) = -Res((1/z^2)F(z);0)$.

$$\int_{\gamma} f = -2\pi i \sum \{ \text{residues of } f \text{ outside } \gamma \text{ including at } \infty \}$$

Evalution of Definite Integrals

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z - 1/z}{2i}$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z + 1/z}{2}$$

$$dz = ie^{i\theta}d\theta = izd\theta$$

$$\int_0^{2\pi} R(\cos \theta, \sin \theta) = 2\pi i \sum \{\text{residues of } f(z) \text{ inside the uni circle}\}$$

$$f(z) = \frac{1}{iz} R\left(\frac{1}{2}(z + \frac{1}{z}), \frac{1}{2i}(z - \frac{1}{z})\right)$$

Integrals on the Whole Real Line

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum \{\text{residues of } f \text{ in } \mathcal{H}\}$$

$$\mathcal{H} = \{z \in \mathbb{C} | Im(z) \ge 0\}$$

$$\int_{-\infty}^{\infty} f(x)dx = -2\pi i \sum \{\text{residues of } f \text{ in } \mathcal{L}\}$$

$$\mathcal{L} = \{z \in \mathbb{C} | Im(z) \le 0\}$$

Cauchy Principal Value

The regular integral $\int_{-\infty}^{\infty} f(x) dx = \lim_{A,B\to\infty} \int_{-A}^{B} f(x) dx$ may not be convergent.

The Cauchy principal value may exist, with $A,B\to\infty$ using the symmetric way: $P.V.\int_{-\infty}^{\infty}f(x)dx=\lim_{R\to\infty}\int_{-R}^{R}f(x)dx$

$$\lim_{r\to 0} \int_{\gamma_r} f = \alpha i Res(f; z_0)$$

Singularities on Real Axie

$$(H)_0 = \{z \in \mathbb{C} | \mathit{Im}(z) > 0\}$$

$$P.V. \int_{-\infty}^{\infty} f(z) dz = 2\pi i \sum \{ \text{residues of } f \text{ in } \mathcal{H}_0 \} + \pi i \sum_{j=1}^{n} Res(f; x_j)$$

$$(L)_0 = \{z \in \mathbb{C} | \mathit{Im}(z) < 0 \}$$

$$P.V. \int_{-\infty}^{\infty} f(z) dz = -2\pi i \sum \{ \text{residues of } f \text{ in } \mathcal{L}_0 \} - \pi i \sum_{j=1}^{n} Res(f; x_j)$$

Jun Ma (CASE) Complex Analysis September 28, 2023 37 / 49

An example

Evaluate $\int_0^\infty \frac{\sqrt[3]{x}}{1+x^2}$

$$g(z) = \sqrt[3]{z}/(1+z^2), 0 < r < 1, R > 1, r \to 0, R \to \infty$$

$$\Sigma = Res(g; i) + Res(g; -i) = \frac{\sqrt[3]{i}}{2i} + \frac{\sqrt[3]{-i}}{-2i} = -e^{\pi i/3}/2$$

$$2\pi i \Sigma = \int_{\gamma_1} g + \int_{\gamma_R} g + \int_{\gamma_2} g + \int_{\gamma_r} g$$

An example

$$\begin{split} |\int_{\gamma_R} g| & \leq \frac{R^{1/3} 2\pi R}{R^2 - 1} \to 0 \\ |\int_{\gamma_r} g| & \leq \frac{r^{1/3} 2\pi r}{1 - r^2} \to 0 \\ \int_{\gamma_1} g & = \int_r^R \frac{x^{1/3}}{1 + x^2} dx \to \int_0^\infty \frac{\sqrt[3]{x}}{1 + x^2} dx \\ \int_{\gamma_2} g & = \int_R^r \frac{x^{1/3} e^{2\pi i/3}}{1 + x^2 e^{4\pi i}} e^{2\pi i} dx \to -e^{2\pi i/3} \int_0^\infty \frac{\sqrt[3]{x}}{1 + x^2} dx \\ \int_0^\infty \frac{\sqrt[3]{x}}{1 + x^2} dx & = \frac{\pi}{\sqrt{3}} \end{split}$$

Laplace Transforms

 $f:[0,\infty)\to\mathbb{C}$ or \mathbb{R} is of exponential order: $|f(t)|\leq Ae^{tB}$ for all $t\leq 0$ with constants $A>0, B\in\mathbb{R}$.

$$\tilde{f}(z) = \int_0^\infty e^{-zt} f(t) dt$$

$$\frac{d}{dz} \tilde{f}(z) = -\int_0^\infty t e^{-zt} f(t) dt$$

There exists a unique number $\sigma, -\infty \leq \sigma < \infty$, such that the integral converges if Re $z > \sigma$ and diverges if Re $z < \sigma$. σ is called the absciaa of convergence.

Define $\rho=\inf\{B\in\mathbb{R}|\text{ there exists an A>0 such that }|f(t)|\leq Ae^{Bt}\}$, then $\sigma\leq\rho$. $\tilde{f}(z)=\tilde{h}(z)$ for Re $z>\gamma_0$ for some γ_0 . Then f(t)=h(t) for all $t\in[0,\infty)$.

◆ロト ◆母ト ◆皇ト ◆皇ト 皇 めらぐ

40 / 49

Laplace Transforms

$$\begin{split} & \underbrace{\left(\frac{df}{dt}\right)}(z) &= z\tilde{f} - f(0) \\ & \underbrace{\left(\frac{d^2f}{dt^2}\right)}(z) &= z^2\tilde{f} - zf(0) - \frac{df}{dt}(0) \\ & \tilde{g}(z) &= d\tilde{f}(z)/dz, \text{ where } g(t) = -tf(t) \\ & g(t) &= \int_0^t f(\tau)d\tau, \text{ then } \tilde{g}(z) = \frac{\tilde{f}(z)}{z} \\ & g(t) &= e^{-at}f(t), \text{ then } \tilde{g}(z) = \tilde{f}(z+a) \text{ (First Shifting Theorem)} \end{split}$$

Second Shifting Theorem

$$H(t) = 0$$
 if $t < 0$ and $H(t) = 1$ if $t \ge 0$, $a \ge 0$, $g(t) = f(t - a)H(t - a)$. $g(t) = 0$ if $t < a$ and $g(t) = f(t - a)$ if $t \ge a$,

$$\tilde{g}(z) = e^{-az} \tilde{f}(z)$$

If g(t) = f(t)H(t-a), then $\tilde{g}(z) = e^{-az}\tilde{F}(z)$ where F(t) = f(t+a)

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・釣り○

Convolution

$$(f * g)(t) = \int_0^\infty f(t - \tau) \cdot g(\tau) d\tau$$

$$(\widetilde{f * g})(z) = \widetilde{f}(z) \cdot \widetilde{g}(z)$$

$$(\widetilde{f * g})(z) = \int_0^\infty e^{-zt} \left[\int_0^\infty f(t - \tau) \cdot g(\tau) d\tau \right] dt$$

$$= \int_0^\infty \left[\int_0^\infty e^{-z\tau} e^{-z(t - \tau)} f(t - \tau) g(\tau) d\tau \right] dt$$

$$= \int_0^\infty e^{-z\tau} \left[\int_0^\infty e^{-z(t - \tau)} f(t - \tau) dt \right] g(\tau) d\tau$$

$$= \int_0^\infty e^{-z\tau} \widetilde{f}(z) g(\tau) d\tau$$

$$= \widetilde{f}(z) \cdot \widetilde{g}(z)$$

Some Common Laplace Transforms

If
$$f(t)=e^{-at}$$
, then $\tilde{f}(z)=\frac{1}{z+a}$ and $\sigma(f)=-\mathrm{Re}\ a$ If $f(t)=\cos at$, then $\tilde{f}(z)=\frac{z}{z^2+a^2}$ and $\sigma(f)=|\mathrm{Im}\ a|$ If $f(t)=\sin at$, then $\tilde{f}(z)=\frac{a}{z^2+a^2}$ and $\sigma(f)=|\mathrm{Im}\ a|$ If $f(t)=t^a, a>-1$, then $\tilde{f}(z)=\frac{\Gamma(a+1)}{z^{a+1}}$ and $\sigma(f)=0$ $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}dt$, $\Gamma(n)=(n-1)!$ If $f(t)=1$, then $\tilde{f}(z)=\frac{1}{z}$ and $\sigma(f)=0$

Complex Inversion Formula

$$f(t) = \sum \{ \text{residues of } e^{zt} F(z) \text{ at each of its singularities in } \mathbb{C} \}$$

Then $\tilde{f}(z) = F(z)$ for Re $z > \sigma$.

Split Γ into a sum of two rectangular paths γ and $\tilde{\gamma}$ by a vertical line through Re $z=\alpha>\sigma$.

Complex Inversion Formula

$$\int_{\gamma} e^{zt} F(z) dz = 2\pi i \sum \{ \text{residues of } e^{zt} F(z) \} = 2\pi i f(t)$$

$$2\pi i \tilde{f}(z) = \lim_{r \to \infty} \int_{0}^{r} e^{-zt} \left[\int_{\gamma} e^{\zeta t} F(\zeta) d\zeta \right] dt$$

$$= \lim_{r \to \infty} \int_{\gamma} \int_{0}^{r} e^{(\zeta - z)t} F(\zeta) dt d\zeta$$

$$= \lim_{r \to \infty} \int_{\gamma} \left(e^{(\zeta - z)r} - 1 \right) \frac{F(\zeta)}{\zeta - z} d\zeta$$

$$= -\int_{\gamma} \frac{F(\zeta)}{\zeta - z} d\zeta = \int_{\tilde{\gamma}} \frac{F(\zeta)}{\zeta - z} d\zeta - \int_{\Gamma} \frac{F(\zeta)}{\zeta - z} d\zeta$$

$$= 2\pi i F(z)$$

Examples

If
$$\tilde{f}(z) = 1/(z-3)$$
, $f(t) = e^{3t}$.
If $\tilde{f}(z) = \log(z^2 + z)$,

$$\tilde{g}(z) = -\frac{d}{dz}\tilde{f}(z) = -\frac{2z+1}{z^2+z} = -\frac{1}{z} - \frac{1}{z+1}$$

$$g(t) = -1 - e^{-t}$$

$$f(t) = -\frac{1}{t}(1+e^{-t})$$

$$\tilde{f}(z) = F(z) = \frac{z}{(z+1)^2(z^2+3z-10)}$$

$$f(t) = \sum \{ \text{residues of } \frac{e^{zt}z}{(z+1)^2(z^2+3z-10)} = \frac{e^{zt}z}{(z+1)^2(z+5)(z-2)} \}$$

$$f(t) = Res(e^{zt}F(z); -1) + Res(e^{zt}F(z); -5) + Res(e^{zt}F(z); 2)$$

$$= \frac{1}{12} \left(te^{-t} - e^{-t} + \frac{e^{-t}}{12} \right) + \frac{5e^{-5t}}{112} + \frac{2e^{2t}}{63}$$

Jun Ma (CASE) Complex Analysis September 28, 2023

47 / 49

Fourier Transforms

 $f: \mathbb{R} \to \mathbb{R}$, the Fourier transform is defined as

$$\hat{f} := (\mathcal{F} \cdot f)(\omega) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

The factor of $1/\sqrt{2\pi}$ may be missing and the exponent may be $-2\pi i\omega x$.

$$\int_{-\infty}^{\infty} f(x) \cos(\omega x) dx = \operatorname{Re} (\hat{f}(\omega))$$

$$\int_{-\infty}^{\infty} f(x) \sin(\omega x) dx = -\operatorname{Im} (\hat{f}(\omega))$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} dx f(x) e^{-i2\pi \omega x}$$

$$f(x) = \int_{-\infty}^{\infty} d\omega \hat{f}(\omega) e^{-i2\pi \omega x}$$

Fourier Transforms

$$\omega <$$
 0, $|e^{-i\omega z}| = e^{\omega y} \leq 1$ in the upper half plane ${\cal H}$

$$\int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx = 2\pi i \sum \{\text{residues of } f(z)e^{-i\omega z} \text{ in } \mathcal{H}\}$$

$$\omega>$$
 0, $|e^{-i\omega z}|=e^{\omega y}\leq 1$ in the lower half plane ${\cal L}$

$$\int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx = -2\pi i \sum \{\text{residues of } f(z)e^{-i\omega z}\text{in}\mathcal{L}\}$$