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Lecture 13. Linear Hamiltonian system and their transport matrices 

Compact form 

We went through following discussion during previous lectures: 
1. A linear Hamiltonian n-dimensional system with s as independent variable and n 
canonical pairs of variables  

XT = q1,P1,...,qn ,Pn{ }⇔ x1,..., x2n{ }
x2k−1 = qk;x2k = Pk;k = 1,..,n

   (1) 

is fully described by its Hamiltonian  

H X, s( ) = 1
2
XTH s( )X; HT s( ) = H s( )    (2) 

where H s( )  is 2n x 2n symmetric matrix with coefficients, in general, depending on (e.g. 
being functions of) s: 

H[ ]ij = hij (s) .     (3) 

Equations of motions can be written in a compact matrix form 

dqi
ds

= ∂H
∂Pi

= hij
j=1

2n

∑ (s)x j;
dPi
ds

= − ∂H
∂qi

= − hij
j=1

2n

∑ (s)x j

dX
ds

= S ⋅H ⋅X; S =

σ 0 .. 0
0 σ ... 0
... ... ... ...
0 0 ... σ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

;σ = 0 1
−1 0

⎡

⎣
⎢

⎤

⎦
⎥

S = sij⎡⎣ ⎤⎦;s2k−1,2k = −s2k ,2k−1 = 1; othewise 0

.   (4) 

or even more compact form 

dX
ds

= D s( ) ⋅X; D s( ) = S ⋅H s( ) .   (5) 

Lecture 13 - finishing 
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One more time, when all component of the vector bellow are small 

X =

x1
x2
x3
x4
x5
x6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

≡

x
P1
y
P3
τ
δ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

≡

x
Px
y
Py
z
Pz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

;      (28) 

we can expand Hamiltonian to the form in eq. (2) – all linear terms are killed by 
assumption that reference particles has the designed trajectory: 

 

!h = P1
2 + P3

2

2po
+ F x

2

2
+ Nxy +G y2

2
+ L xP3 − yP1( ) +

        δ
2

2po
⋅m

2c2

po
2 +U τ 2

2
+ gxxδ + gyyδ + Fxxτ + Fyyτ

;   (29)  

with 

F
po

= −K ⋅ e
poc

By −
e
poc

∂By

∂ x
+ eBs
2poc

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− e
povo

∂Ex

∂ x
− 2K eEx

povo
+ meEx

po
2

⎛
⎝⎜

⎞
⎠⎟

2

;

G
po

= e
poc

∂Bx

∂ y
+ eBs
2poc

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− e
povo

∂Ey

∂ y
+

meEz

po
2

⎛
⎝⎜

⎞
⎠⎟

2

;

2N
po

= e
poc

∂Bx

∂ x
− e
poc

∂By

∂ y
⎡

⎣
⎢

⎤

⎦
⎥ − K ⋅ e

poc
Bx −

e
povo

∂Ex

∂ y
+
∂Ey

∂ x
⎛
⎝⎜

⎞
⎠⎟
− 2K

eEy

povo
+

meEz

po
2

⎛
⎝⎜

⎞
⎠⎟
meEx

po
2

⎛
⎝⎜

⎞
⎠⎟

;( 30)  

� 

L = κ + e
2poc

Bs;         
U
po

= e
pc 2

∂Es

∂t
;  gx =

mc( )2 ⋅ eEx

po
3 −K c

vo

; gy =
mc( )2 ⋅ eEy

po
3 ;

Fx = e
c
∂By

∂ct
+ e

vo

∂Ex

∂ct
;Fy = − e

c
∂Bx

∂ct
+ e

vo

∂Ey

∂ct
.
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H =

F 0 N L Fx gx
0 1/ po −L 0 0 0
N −L G 0 Fy gy
L 0 0 1/ po 0 0
Fx 0 Fy 0 U 0

gx 0 gy 0 0 m2c2

po
3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

;D =

0 1/ po −L 0 Fx 0
−F 0 −N −L 0 −gx
L 0 0 1/ po Fy 0

−N L −G 0 0 −gy

gx 0 gy 0 0 m2c2

po
3

−Fx 0 −Fy 0 −U 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (31) 
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det[D−λI ]= det

−λ 1 −L 0
− f −λ −n −L
L 0 −λ 1
−n L −g −λ

"

#

$
$
$
$

%

&

'
'
'
'

Let’s find the solutions for 4x4 matrixes of arbitrary element. First, let solve 
characteristic equation for D: 

� 

det[D− λI] = λ4 + λ2 f + g + 2L2( ) + fg + L4 − L2 f + g( ) − n2 = 0   (45) 

with easy roots: 

� 

λ2 = a ± b; a = − f + g + 2L2

2
; b2 =

f − g( )2

4
+ 2L2 f + g( ) + n2  (46) 

Before starting classification of the cases, let’s note that  

� 

f + g = K 2 + 2 eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

≥ 0  

i.e. 

� 

a ≤ 0; b2 ≥ 0;  Im b( ) = 0.!
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Before starting classification of the cases, let’s note that  

� 

f + g = K 2 + 2 eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

≥ 0  

i.e. 

� 

a ≤ 0; b2 ≥ 0;  Im b( ) = 0.The solutions can be classified as following: remember that the 
full set of eigen values is 

� 

λ1,−λ1,λ2,−λ2: 
 
I. 

� 

λ1 = λ2 = 0;  a = 0; b = 0;  
II. 

� 

λ1 = λ2 = iω;  a = −ω 2; b = 0; 
III. 

� 

λ1 = 0;  λ2 = iω;  a + b = 0;  2b = ω 2 

IV. 

� 

λ1 = iω1;  λ2 = iω 2;   ω1
2 = −a − b; ω 2

2 = −a + b; a > b   
V. 

� 

λ1 = iω1;  λ2 = ω 2; ω1
2 = −a − b; ω 2

2 = b − a; b > a   

λ 2 = a ± b; a = − f + g + 2L2

2
; b2 =

f − g( )2

4
+ 2L2 f + g( ) + n2
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Before going into the discussion of the parameterization of the motion, we need to finish 
discussion of few remaining topics for 6x6 matrix of an accelerator. First is multiplication 
of the 6x6 matrixes for purely magnetic elements: 

Mk (6x6) = 
Mk (4 x4) 0 Rk
Qk 1 R56 k

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;

M2 (6x6)M1(6x6) =

M(4 x4) 0 R
Q 1 R56

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
==

M2M1 0 R2 +M2R1

Q2 +Q1M2 1 R561
+ R562

+Q2R1

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (51) 

i.e. having transformation rules for mixed size objects: a 4x4 matrix M, 4-elemetn 
column R, 4 element line L, and a number R56. As you remember, L is dependent (L4-7) 
and expressed as Q= RTSM. Thus: 

M(4 x4) =M2M1; R =M2R1 + R2; Q =Q2M1 +Q1; R56 = R561
+ R562

+Q2R1  (52) 
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One thing is left without discussion so far – the energy change. Thus, we should look into 
a particle passing through an RF cavity, which has alternating longitudinal field. Again, 
for simplicity we will assume that equilibrium particle does not gain energy, i.e. po stays 
constant and we can continue using reduced variables. We will also assume that the is no 
transverse field, neither AC or DC. In this case the Hamiltonian reduces to a simple, fully 
decoupled: 

� 

˜ h = π1
2 + π 3

2

2
+ π o

2

2
⋅ m2c 2

po
2 + u τ

2

2
;;   (53)  

dX
ds

= D ⋅X;  D =
Dx 0 0
0 Dy 0

0 0 Dl

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

;  Dx = Dy =
0 1
0 0

⎡

⎣
⎢

⎤

⎦
⎥;Dl =

0 m2c2

po
2

−u 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;

M =
Mx 0 0
0 My 0

0 0 Ml

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

;Mx = My =
1 s
0 1

⎡

⎣
⎢

⎤

⎦
⎥;                          ω = detDl = mc

po
u

Ml =
cosω s m2c2

po
2 sinω s /ω

−u sinω s /ω cosω s

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; u > 0; Ml =

coshω s m2c2

po
2 sinhω s /ω

−u sinhω s /ω coshω s

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; u < 0;

(53) 
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Just for fun, let’s look at 1D matrices of quadrupole: 

� 

˜ h = π 3
2

2
+ K1

y 2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

π1
2

2
−K1

x 2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

πδ
2

2
⋅ m2c 2

po
2 ; K1 = e

poc
∂By

∂x
;  (56) 

Thus, it is non-degenerated case only when 

� 

det[D] ≠ 0  we have a simple two-piece 
expression : 

� 

exp Ds[ ] = eλs D− λI
2λ

− e−λs D+ λ I
2λ

    (57) 

while (37) bring it home right away: 

� 

exp Ds[ ] = I⋅ e
λs + e−λs

2
+D e

λs − e−λs

2λ
;

exp Ds[ ] = I⋅ coshλ s+
Dsinhλ s

λ
;  det[D] < 0;  λ = −det[D]

exp Ds[ ] = I⋅ cosλ s+
Dsinλ s

λ
;     det[D] > 0;   λ = det[D]

  (58) 
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The case 

� 

det[D] = 0 means in this case that D is nilpotent: eqs (37) look like follows 

� 

detD = 0 ⇒ λ1 = −λ2 = 0; d(λ) = det[D− λI] = λ1 − λ( ) −λ1 − λ( ) = λ2  ⇒ D2 = 0    

hence 

� 

exp Ds[ ] = I+Ds;   det[D] = 0;    (59) 

For non-scaled case is just a change of variables: 

� 

˜ h = P3
2

2 po

+ poK1
y 2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

P1
2

2po

− poK1
x 2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

δ 2

2po

⋅ m2c 2

po
2 ; K1 = e

poc
∂By

∂x
;  (60) 

� 

Dx =
0 1/ po
poK1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  Dy =

0 1/ po
−poK1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; φ = s K1

MF =
cosφ sinφ / po K1

−po K1 sinφ cosφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  MD =

coshφ sinhφ / po K1

po K1 sinhφ coshφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 

 



11 

In a case when length of the quadrupole is very short, but the strength  is finite. It is 
called thin-lens approximations: 

ϕ = s K1 → 0;K1s = const =
1
F

MF →
1 0

−
po
F

1

#

$

%
%
%

&

'

(
(
(
;MD →

1 0
po
F

1

#

$

%
%
%

&

'

(
(
(

{x, x '},{y, y '}

MF →
1 0

−
1
F

1

#

$

%
%
%

&

'

(
(
(
;MD →

1 0
1
F

1

#

$

%
%
%

&

'

(
(
(

      (61)

 

In majority of the cases 

� 

ωs<<1 (mc/po ~ 1/γ) and RF cavity can be represented as a thin 
lens located in its center:  

� 

M =
I 0 0
0 I 0
0 0 Ml

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;  Ml =

1 0
−q 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;   q = u⋅ lRF = −

e
poc

∂Vrf

∂t
         (55) 
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Lecture 14. Periodic systems and parameterization of linearized particle’s motion. 

Periodic linear Hamiltonian systems are of special interest for accelerators. First, one of 
most popular accelerator designs is a circular accelerator (called synchrotrons and storage 
rings) where particles going around bot millions and billions of turns. At each path they 
go through the same sequence of the elements, e.g. they see periodic structure with period 
equal to accelerator circumference. Stability of the particle’s motion is of a paramount 
importance for their proper operation.  

Furthermore, for an accelerator beam-lines (e.g. part of an accelerator) comprising 
hundreds (or even thousands) of magnets, physicist and engineers like using a relatively 
simple cell and repeat it multiple times. This allows one to study this cell in detail and 
then “match” the beam into the entire beamline. A FODO cell comprised of two 
quadrupoles F and D, separated by drift spaces O. It is customary to call F quadrupole 
focusing in horizontal (x, radial) direction and, naturally, defocusing in vertical (y) 
direction. Vice versa, D is a defocusing quadrupole focuses in y direction and defocuses 
in x. FODO is a simple and still very popular cell. For example, eRHIC energy recovery 
linac (ERL) arcs will be comprised of many hundreds of FODO cells.  
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Stability and Parameterization of motion in periodic systems 

A"Hamiltonian"periodic"system"with"period"C,"is"described"by"periodic"Hamiltonian:"
H (X, s +C) = H (X, s) ."For"linear"Hamiltonian"system"is"means"that"(elements"of)"
matrix"of"the"Hamiltonian"is"(are)"a"periodic"function"of"s.:"

H = 1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2
XT ⋅H(s) ⋅X,  H(s +C) = H(s) ;"" " (1)"

In"this"case,"a"oneAturn"(or"one"period)"transport"matrix""

� 

T(s) =M s s+ C( )" " " " (2)"
plays"a"very"important"role."Its"eigen"values,"λi,""

� 

det T− λi ⋅ I[ ] = 0" " " " (3)"
determine is the motion is stable, e.g. that all 

� 

λi ≤1 or is unstable, e.g. some 

� 

λi >1. 
Before making specific statements about the stability, we look at the properties of the 
eigen vectors.  
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First, eigen values are a function of periodic system and do not depend on the azimuth, s. 
It is easy to show that a one-turn matrix is transformed by the transport matrix as 

� 

T(s1) =M s s1( )T(s)M−1 s s1( )      (4) 

� 

T(s1) =M s1 s1 + C( ) =M s+ C s1 + C( )M s1 s+ C( ) =M s+ C s1 + C( )M s s+ C( )M s1 s( )  

� 

M s+ C s1 + C( ) ≡M s s1( ); M s s+ C( ), M s1 s( ) ≡M−1 s s1( ) ⇒ T(s1) =M s s1( )T(s)M−1 s s1( )#  

It means that

� 

T(s1)has the same eigen values (3); thus, the eigen values of 

� 

T(s) do not 
depend upon s because 

� 

det MTM−1 − λi ⋅ I[ ] = det M T− λi ⋅ I( )M−1[ ] = det T− λi ⋅ I[ ]
⇒ T s1( ) − λi ⋅ I[ ] = T s( ) − λi ⋅ I[ ] = 0

  (5) 

The matrix 

� 

T is a real, complex conjugate of eigen value 

� 

λi
*  which is also eigen value 

of 

� 

T 

� 

T− λi ⋅ I[ ]* = T− λ*i ⋅ I[ ] = 0 
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Furthermore, the symplecticity of 

� 

T  requires that 

� 

λi
−1  also is eigen value of 

� 

T. Proving 
that the inverse matrix 

� 

T−1 has 

� 

λi
−1  as a eigen value is easy. 

TYi = λiYi ; T
−1T = I→ T−1T( )Yi = IYi = Yi

T−1TYi = λiT
−1Yi = Yi → T−1Yi = λi

−1Yi
 

At the same time 

� 

0 = det T−1 − λi
−1I[ ] = det S TT − λi

−1I[ ]S−1( ) = det TT − λi
−1I[ ] = det T− λi

−1I[ ]  (5’) 

and here, symplectic conditions help us again. Thus, the real symplectic matrix has n 
pairs of eigen values as follows: a) inverse {

� 

λi,λi
−1}, and b) complex conjugate {

� 

λi,λi
*}. 

We assume that matrix T can be diagonalized (see note on the following page for the 
general case of Jordan normal form). 

In general case of multiplicity of eigen vectors, the matrix cannot be diagonalized but can be brought to Jordan normal 
form http://en.wikipedia.org/wiki/Jordan_normal_form#Generalized_eigenvectors , Glenn James and Robert C. James, 
Mathematics. In this case, there is a subset of generalized eigen vectors 

� 

Yk,1,...,Yk,h{ } that belong to a eigen value 

� 

λk  
with multiplicity h:  

� 

T ⋅Yk,h = λkYk,h; T ⋅Yk,m = λkYk,m +Yk,m+1; m = 1...h − 1. 

The result is even stronger than in the diagonal case; motion is unstable even when 

� 

λk =1:  

� 

T ⋅Yk,h−1 = λkYk,h−1 +Yk,h ⇒ Tn ⋅Yk,h−1 =Yk,h−1 + n ⋅Yk,h !
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Therefore, repeating the matrix T again and again undoubtedly will cause an 
exponentially growing solution if 

� 

λi >1. This statement is readily verified, but in so, we 
introduce some useful term and matrices. The set of eigen vectors Yi of matrix T  

� 

T ⋅Yi = λi ⋅Yi;                      i = 1,2....2n   (6) 

is complete and an arbitrary vector X can be expanded about this basis: 

� 

X = aiYi
i=1

2n

∑ ≡U ⋅ A,  U = Y1.......Y2n[ ],     AT = a1.......a2n[ ].  (7) 

where we introduces matrix U built from eigen vector of the matrix T: 

� 

T ⋅U =U ⋅ Λ, Λ =
λ1 ... 0
... ... ....
0 .... λ2n

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
     (8) 

The later equation is equivalent to diagonalization of the matrix T: 

� 

U−1 ⋅T ⋅U = Λ, or T =U ⋅ Λ ⋅U−1     (9) 



17 

Multiple application of matrix T (i.e., passes around the ring) 

� 

Tn ⋅ X = λi
naiYi

i=1

2n

∑      (10) 

exhibit exponentially growing terms if the module of even one eigen value is larger than 
1,

� 

λk = λ eiµ , 

� 

λ >1; we easily observe that a solution with the initial condition 

� 

Xo = ReakYk 
grows exponentially: 

� 

TnXo = λ n ReakYke
inµ . 

Immediately this suggests that the only possible stable system is when all eigen values 
are uni-modular 

� 

λi =1.      (11) 

otherwise assuming 

� 

λi <1 means that there is eigen value 

� 

λk = λi
−1; λk =1/ λi >1. We also 

consider only cases when all eigen vectors differ. Then, there are n pairs of eigen vectors, 
which we term modes of oscillations: 

� 

λk ≡1/λk+n ≡ λ*
k+n ≡ eiµk ; µk ≡ 2πν k,   {k = 1,...n}.  (12) 

where the complex conjugate pairs are identical to the inverse pairs.  



18 Eq. (9) can be rewritten as  

� 

T(s) =U(s)ΛU−1(s); Λ =

λ1 0 0
0 λ1

* 0
... 0

0 0 0 λn
*

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

; T(s) ⋅U(s) =U(s) ⋅ Λ   (13) 

and matrix U built from complex conjugate eigen vectors of T: 

� 

U(s) = Y1,Y1
* ....Yn ,Yn

*[ ];     T(s)Yk (s) = λkYk (s)    ⇔  T(s)Yk
*(s) = λk

*Yk
*(s)    (14) 

Thus, eigen vectors can be transported from one azimuth to another by the transport 
matrix: 

� 

˜ Y k (s1) =M s s1( ) ˜ Y k (s) ⇔ d
ds

˜ Y k =D s( ) ⋅ ˜ Y k     (15) 

It is eigen vector of 

� 

T(s1). - just add (4) to (14): 

� 

T(s1) ˜ Y k (s1) =M s s1( )T(s)M−1 s s1( )M s s1( ) ˜ Y k (s) =M s s1( )T(s) ˜ Y (s) = λkM s s1( ) ˜ Y (s) = λk
˜ Y k (s1)#  

Similarly,  

� 

˜ U (s1) = M s s1( ) ˜ U (s) ⇔ d
ds

˜ U = D s( ) ⋅ ˜ U     (16) 

with the obvious follow-up by 

� 

˜ U (s + C) = ˜ U (s) ⋅ Λ, ˜ Y k (s + C) = λk
˜ Y k (s) = eiµk ˜ Y k (s)   (17) 
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A*T ⋅S ⋅A( )* = AT ⋅S ⋅A*( ) = − A*T ⋅S ⋅A( )T = − A*T ⋅S ⋅A( )

The kth eigen vectors are multiplied by 

� 

eiµk  after each pass through the period. Hence, we 
can write 

� 

˜ Y k (s) = Yk (s)eψ k s( ); Yk (s + C) = Yk (s); ψk s + C( ) =ψk s( ) + µk  (18) 

� 

˜ U (s) = U(s) ⋅ Ψ(s), Ψ(s) =

eiψ1 (s) 0 0
0 e− iψ1 (s) 0

... 0
0 0 0 e−iψ n (s)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

   (19) 

It is remarkable that the symplectic products (12) of the eigen vectors are non-zero-only 
complex conjugate pairs: in other words, the structure of the Hamiltonian metrics is 
preserved here. 

� 

Yk
T ⋅S ⋅Yk

T ≡ 0  is obvious. Using only the symplecticity of T gives us 
desirable yields 

� 

Yk
T ⋅S ⋅Yj

T =Yk
T ⋅TTST ⋅Yj

T = λkλ j Yk
T ⋅S ⋅Yj

T( ) ⇒ (1− λkλ j ) Yk
T ⋅S ⋅Yj

T( ) = 0  

 for 

� 

λkλ j ≠1 

� 

Yk
T * ⋅S ⋅Yj≠k = 0; Yk

T ⋅S ⋅Yj = 0; .    (20) 

and only the nonzero products for 

� 

λk =1/λ j = λ* j  are clearly pure imaginary: 

� 

Yk
T * ⋅S ⋅Yk = 2i ,     (21) 

where we chose the calibration of purely imaginary values as 2i for the following 
expansion to be symplectic.  
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in matrix form using (16) we have 

� 

X = 1
2

˜ U A, ′ X = 1
2

˜ ′ U A + ˜ U ′ A ( ),= DX = 1
2

D ˜ U ⋅ A = 1
2

˜ ′ U ⋅ A ⇒ ′ A = 0!

Eqs. (20-21) in compact matrix form is  

� 

UT ⋅S ⋅U ≡ ˜ U T ⋅S ⋅ ˜ U = −2iS, U−1 = 1
2i

S ⋅UT ⋅S.   (22) 

The expressions for the transport matrices through β, α-functions, and phase advances 
often derived as a “miraculous” result, and hence called matrix gymnastics, is just a 
trivial consequence of equations (16), (19), and (22): 

� 

M s s1( ) = ˜ U (s1) ˜ U −1(s) = 1
2i

˜ U (s1) ⋅S ⋅ ˜ U T (s) ⋅S = 1
2i

U(s1) ⋅ Ψ(s1) ⋅S ⋅ Ψ
−1(s) ⋅UT (s1)  (16’) 

with a specific case of a one-turn matrix: 

� 

T =UΛU−1 = 1
2i
UΛSUTS     (13’) 

S-orthogonality (20) provides an excellent tool of finding complex coefficients in the 
expansion eq. (7) of an arbitrary solution X(s) 

� 

Xo = aiYi ⇒
i=1

2n

∑ X(s) = 1
2

ak
˜ Y k + ak

* ˜ Y k
*( )

k=1

n

∑ ≡ Re akYke
iψ k

k=1

n

∑ ≡ 1
2

˜ U ⋅ A = 1
2

U ⋅ Ψ ⋅ A = 1
2

U ⋅ ˜ A  (23) 

where 2n complex coefficients, which are constants of motion for linear Hamiltonian 
system, can be found by a simple multiplications (instead of solving a system of 2n linear 
equations (7)) 

� 

ai = 1
2i

Yi
*T SX; ˜ a i ≡ aie

iψ
i = 1

2i
Yi

*T SX;

A = 2 ˜ U −1 ⋅ X = −iΨ−1 ⋅S ⋅UT * ⋅S ⋅ X; ˜ A = ΨA = −i ⋅S ⋅UT * ⋅S ⋅ X .
   (24) 
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1 We are free to multiply the eigen vector Y by 

� 

eiφ  to make a real number. In other words we define the choice of our 

phase as 

� 

˜ Y (s) =
˜ y 1(s)
˜ y 2(s)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; w(s) = ˜ y 1(s);ψ(s) = arg ˜ y (s)( ). 

Equation (23) is nothing else but a general parameterization of motion in the linear 
Hamiltonian system. It is very powerful tool and we will use this many times in this 
course.  
We consider next a specific case of a 1D system with a linear periodical Hamiltonian: 

� 

˜ h = p2

2
+ K1(s) y 2

2
; H =

K1 0
0 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;D = SH =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .  (25) 

The equations of motion are simple 

� 

d
ds

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

p
−K1x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (i.e. ′ x ≡ p).  (26) 

A one-turn matrix within its determinant (ad-bc=1)  

� 

T(s) =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =U(s)ΛU−1(s); Λ =

λ 0
0 1/λ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

eiµ 0
0 e−iµ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;   (27) 

� 

Y =
w

u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ Y =

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ ; U =

w w
u + i /w u − i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ U = U ⋅

eiψ 0
0 e−iψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (28) 

where w(s) and u(s) are real functions and calibration was used for (21).  
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T has a trace  

� 

Trace(T) = Trace(Λ) = 2cosµ   (29) 

(because 

� 

Trace(ABA−1) = Trace(B) ). Thus, the stability of motion (when µ is real!) is easy to 
check:  

� 

−2 < Trace(T) < 2     (30) 

where some well-know resonances are excluded: The integer 

� 

µ = 2πm , and the half-
integer

� 

µ = 2(m +1)π  as being unstable (troublesome!).  

Combining (28) into the equations of motion (25)  

� 

d
ds

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ ˜ Y =

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ ⇒

′ w +iw ′ ψ = u + i /w
′ u − i ′ w /w 2 + i ′ ψ u + i /w( ) = −K1w

.  (31) 

Then, separating the real and imaginary parts, we have from the first equation: 

� 

u = ′ w ; ′ ψ = 1/w 2 .     (32) 

Plugging these into the second equation yields one nontrivial equation on the envelope 
function, w(s): 

� 

′ ′ w + K1(s)w = 1
w 3 .       (33) 
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Thus, the final form of the eigen vector can be rewritten as 

� 

Y =
w

′ w + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ′ ψ = 1

w 2 ; ˜ Y = Yeiψ      (34) 

The parameterization of the linear 1D motion is  

� 

x
′ x 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = Re aeiϕ w

′ w + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;      

� 

x = a ⋅w(s) ⋅ cos ψ(s) + ϕ( )
′ x = a ⋅ ′ w (s) ⋅ cos ψ(s) + ϕ( ) − sin ψ(s) + ϕ( ) /w(s)( )

    (35) 

where a and ϕ  are the constants of motion.  

€ 

aw
€ 

a /w

€ 

a " w 2 +1/w 2

x'

x
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We will discuss the features of J=ln(T) for a general case in next class  

Tradition in accelerator physics calls for using the so-called β-function, which simply a 
square of the envelope function: 

� 

β ≡ w2 ⇒ ′ ψ =1/β .    (36) 

and a wavelength of oscillations divided by 2π. Subservient functions are defined as 

� 

α ≡ − ′ β ≡ −w ′ w , γ ≡ 1+ α 2

β
.   (37) 

While α,β,γ are frequently used in accelerator physics, unless they are equiped with 
indicies αx,y,βx,y,γx,y, they can be easily mistaken with relativistic factors β and γ. Beware 
of this possibility and see in what contest α,β,γ are used. 

Manipulations with them is much less transparent, and oscillation (35) looks like 

� 

x = a ⋅ β(s) ⋅ cos ψ(s) + ϕ( )
′ x = − a

β(s)
⋅ α(s) ⋅ cos ψ(s) + ϕ( ) + sin ψ(s) + ϕ( )( )    (38) 

Finally, (13’) gives us a well-known feature in AP parameterization of a one-turn matrix:  

T = UΛU−1 = Icosµ + Jsinµ;   J =
α β
−γ −α

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
   (39) 
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Action-angle variables 

Another important transformation used (not-only!) in accelerator physics is the 

transformation to the action-angle variables 

� 

ϕk,Ik = ak
2

2
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. Usually this requires two 

steps: The first is  

 
!qk =

ake
iϕk

2
, !pk = i

ake
− iϕk

2
⎧
⎨
⎩

⎫
⎬
⎭

.    (40) 

The second step is very simple, It is known from classical theory of harmonic oscillators. 
A Canonical transformation  

 

qk =ϕk; pk ≡ Ik =
a2

2
⎧
⎨
⎩

⎫
⎬
⎭
⇔ !qk =

ake
iϕk

2
, !pk = i

ake
− iϕk

2
⎧
⎨
⎩

⎫
⎬
⎭

F q, !q( ) = − i
!qk
2

2
e−2iϕk

k=1

n

∑ ; ∂F
∂s

= 0→ !H = H

Ik =
∂F
∂qk

≡ ∂F
∂ϕk

= !q2ke
−2iϕk = ak

2

2
; !pk = − ∂F

∂ !qk
= i !qke

−2iϕk i ake
− iϕk

2
.

.  (41) 
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First step we already went when we discussed HW9. Let us now, again, demonstrate that 
symplectic transformation 

� 

X(s) ⇒ ˜ X (s) 

� 

X(s) = V s( ) ˜ X ,    ′ V s( ) = SH s( )V s( ) .    (42) 

is canonical. Beginning from a Hamiltonian composed of two parts, a linear part and an 
arbitrary one  

  

� 

H = 1
2
XTH s( )X + H 1 (X,s) .    (43) 

The equation of motion  

  

� 

dX
ds

= S ⋅ ∂H
∂X

= SH s( ) ⋅ X + S ⋅ ∂H 1

∂X
.    (44) 

becomes with substitution (41) 

  

� 

V ˜ X ( )′ = SHV ⋅ ˜ X + V ˜ ′ X = SH s( ) ⋅V ˜ X + S ⋅ ∂H 1

∂X
⇒ V ˜ ′ X = S ⋅ ∂H 1

∂X
.   (45) 

equivalent to the equations of motion with the new Hamiltonian:   

� 

H 1 (V ˜ X ,s)  

  

� 

˜ ′ X = V−1S ⋅ ∂H 1

∂X
; ∂
∂X

= V−1T ∂
∂ ˜ X 

⇒ ˜ ′ X = V−1SV−1T( ) ⋅ ∂H 1

∂ ˜ X 
⇒ ˜ ′ X = S ⋅ ∂H 1

∂ ˜ X 
. (46) 
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This result (even though expected) has long-lasting consequences – the trivial (linear) 
part in the Hamiltonian can be removed from equations of motion, so allowing one to use 
this in perturbation theory or at least to focus only on non-trivial part of the motion.  

� 

V = 1
2
Y1,iY1......[ ] ⇒ VTSV = S #   (47) 

Finally, we know that for any canonical transformation: 

 

XT ≡ qk , pk{ }⇔ AT ≡ !qk =
ake

iϕk

2
, !pk = i

ake
− iϕk

2
⎧
⎨
⎩

⎫
⎬
⎭

!H = H +
∂F q, !q, s( )

∂s

.  (48) 

But by design for a linear Hamiltonian system,  

HL =
1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2
XT ⋅H(s) ⋅X    (49) 

AT = consts. It means that 

 

∂F q, !q, s( )
∂s

= −HL     (50) 
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arbitrary (in general case, nonlinear) Hamiltonian system 

H X, s( ) = HL X, s( ) + H1 X, s( )     (51) 

we will come to the reduced equations of motion with the Hamiltonian:  

 

!H = H + ∂F
∂s

= H − HL = H1 X, s( );
!H A, s( ) = H1 X(A, s), s( ).

    (51) 

where we eliminated “boring” oscillating part of the motion. Since next step of 
transformation to the action-angle variables (41) does not change the Hamiltonian, we 
finally get: 

 

!H ϕk , Ik , s( ) = H1 X(ϕk , Ik , s), s( );
dϕk

ds
= ∂ !H
∂Ik

; dIk
ds

= − ∂ !H
∂ϕk

.
    (52) 

These “reduced” equations of motion can be very useful when H1  can be treated as 
perturbation or in studies of non-linear map. We will return to them again and again 
through the course. 
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If you fill uncomfortable using complex Canonical variables (48), you can perform 
identical (but a bit lengthier) exercise with  !qk = ak cosϕk , !pk = −ak sinϕk{ }  and rewriting 
(24) using real and imaginary part of the eigen vectors. In any case , you will reach the 
same conclusions. 


