
Chapter 91897

Weak Focusing Synchrotron1898

Abstract This Chapter introduces to the weak focusing synchrotron, and to the the-1899

oretical material needed for the simulation exercises. It begins with a brief reminder1900

of the historical context, and continues with beam optics and acceleration techniques1901

which the weak focusing synchrotron principle and methods lean on. Regarding the1902

latter, it relies on basic charged particle optics and acceleration concepts introduced1903

in the previous Chapters, and further addresses the following aspects:1904

- fixed closed orbit,1905

- periodic structure,1906

- periodic motion stability,1907

- optical functions,1908

- synchrotron motion,1909

- depolarizing resonances.1910

The simulation of a weak focusing synchrotron lattice only requires two optical1911

elements: DIPOLE or BEND to simulate combined function dipoles, and DRIFT to1912

simulate straight sections. A third element CAVITE, is required for acceleration. Par-1913

ticle monitoring requires keywords introduced in the previous Chapters, including1914

FAISCEAU, FAISTORE, possibly PICKUPS, and some others. Spin motion com-1915

putation and monitoring resort to SPNTRK, SPNPRT, FAISTORE. Optics matching1916

and optimization use FIT[2]. INCLUDE is used, mostly here in order to shorten the1917

input data files. SYSTEM is used to, mostly, resort to gnuplot so as to end simu-1918

laitons with some specific graphs obtained by reading data from output files such as1919

zgoubi.fai (resulting from the use of FAISTORE), zgoubi.plt (resulting from IL=2),1920

or other zgoubi.*.out files resulting from a PRINT command.1921

73
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Notations used in the Text1922

B; B, Bx,y,s field value; field vector, its components in the moving frame
Bρ = p/q; Bρ0 particle rigidity; reference rigidity

C; C0 orbit length, C = 2πR +
[ straight
sections ; reference, C0 = C(p = p0)

E particle energy
EFB Effective Field Boundary
frev, frf revolution and accelerating voltage frequencies
h RF harmonic number, h = frf/ frev
m; m0; M mass, m = γm0; rest mass; in units of MeV/c2

n =
ρ

B
dB
dρ

focusing index

p; p; p0 momentum vector; its modulus; reference
Pi, Pf beam polarization, initial, final
q particle charge
r, R orbital radius ; average radius, R = C/2π
s path variable
v particle velocity
V(t); V̂ oscillating voltage; its peak value
x, x’, y, y’ horizontal and vertical coordinates in the moving frame

α momentum compaction
α trajectory angle
β = v/c; β0; βs normalized particle velocity; reference; synchronous
βu betatron functions (u : x, y)
γ = E/m0 Lorentz relativistic factor
δp momentum offset or Dirac distribution
∆p momentum offset
ε wedge angle
εu Courant-Snyder invariant (u : x, r, y, l, etc.)
ǫR strength of a depolarizing resonance
µu betatron phase advance, µu =

∫
period

ds/βu(s) (u : x, y)

νu wave numbers, radial, vertical, synchrotron (u : x, y, s)
νsp spin tune
ρ, ρ0 curvature radius; reference
σ beam matrix
φ; φs particle phase at voltage gap; synchronous phase
φu betatron phase advance, φu =

∫
ds/βu (u : x, y)

ϕ spin angle to the vertical axis

1923
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9.1 Introduction1924

The synchrotron is an outcome of the mid-1940s longitudinal phase focusing syn-1925

chronous acceleration concept [1, 2]. In its early version, transverse beam stability1926

in the synchrotron during the thousands of turns that the acceleration lasts was based1927

on the technique known at the time: weak focusing, as in the cyclotron and in the be-1928

tatron. An existing betatron was used to first demonstrate phase-stable synchronous1929

acceleration with slow variation of the magnetic field, on a fixed orbit, in 1946 [3],1930

- closely following the demonstration of the principle of phase focusing using a1931

fixed-field cyclotron [4].1932

Phase focusing states that stability of the longitudinal motion, longitudinal focus-1933

ing, is obtained if particles in a bunch, which have a natural energy spread, arrive1934

at the accelerating gap in the vicinity of a proper phase of the oscillating voltage,1935

the synchronous phase; if this condition is fulfilled the bunch stays together, in the1936

vicinity of the latter, during acceleration. Synchrotrons operate in general in a non-1937

isochronous regime: the revolution period changes with energy; as a consequence,1938

in order to maintain an accelerated bunch on the synchronous phase, the RF voltage1939

frequency, which satisfies frf = h frev, has to change continuously from injection to1940

top energy. The reference orbit in a synchrotron is maintained at constant radius by1941

ramping the guiding field in the main dipoles in synchronism with the acceleration,1942

as in the betatron [5].1943

Fig. 9.1 SATURNE I at Saclay [6], a 3 GeV,
4-period, 68.9 m circumference, weak focusing
synchrotron, constructed in 1956-58. The injec-
tion line can be seen in the foreground, injection
is from a 3.6 MeV Van de Graaff (not visible)

Fig. 9.2 A slice of SATURNE I dipole [6]. The
slight gap tapering is hardly visible (increasing
outward), it determines the weak index condition
0 < n < 1

The synchrotron concept allowed the highest energy reach by particle accelerators1944

at the time, it led to the construction of a series of proton rings with increasing1945

energy [7]: 1 GeV at Birmingham (1953), 3.3 GeV at the Cosmotron (Brookhaven1946
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National Laboratory, 1953-1969), 6.2 GeV at the Bevatron (Berkeley, 1954-1993),1947

10 GeV at the Synchro-Phasotron (JINR, Dubna, 1957-2003), and a few additional1948

ones in the late 1950s well into the era of the concept which would essentially1949

dethrone the weak focusing method and its quite bulky rings of magnets which were1950

a practical limit to further increase in energy1: the strong focusing synchrotron (the1951

object of Chapter 10). The general layout of these first weak focusing synchrotrons1952

included straight sections (often 4, Fig. 9.1), which allowed insertion of injection1953

(Fig. 9.1) and extraction systems, accelerating cavities, orbit correction and beam1954

monitoring equipment.1955

Fig. 9.3 Left: Loma Linda
University medical syn-
chrotron [8], during com-
missioning in 1989 at the
Fermilab National Laboratory
where it was designed

The next decades following the invention of the synchrotron saw applications in1956

many fields of science including fixed-target nuclear physics for particle discovery,1957

material science, medicine, industry. Its technological simplicity still makes it an1958

appropriate technology today in low energy beam application when relatively low1959

current is not a concern, as in the hadrontherapy application (Fig. 9.3) [9, 10]: it1960

essentially requires a single type of a simple dipole magnet, an accelerating gap, some1961

command-control instrumentation, whereas it procures greater beam manipulation1962

flexibilities compared to (synchro-)cyclotrons.1963

Polarized beams1964

The availability of polarized proton sources allowed the acceleration of polarized1965

beams to high energy. The possibility was considered from the early times at Argonne1966

ZGS (Zero-Gradient Synchrotron), a 12 GeV weak focusing synchrotron operated1967

over 1964-1979 [11] (Fig. 9.4). Up to 70% polarization transmission through the syn-1968

chrotron was achieved, for the first time in a synchrotron2 and reaching multi-GeV1969

1 The story has it that it is possible to ride a bicycle in the vacuum chamber of Dubna’s Synchro-
Phasotron.

2 Polarized beam had been accelerated in cyclotrons, at earlier times.
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Fig. 9.4 The ZGS at Ar-
gonne during construction. A
12 GeV, 8-dipole, 4-period,
172 m circumference, wedge
focusing synchrotron. The two
persons inside and outside
the ring, in the background,
give an idea of the size of the
magnets

energy in 1973, up to 17.5 GeV/c with appreciable polarizations [12]. Polariza-1970

tion preservation techniques included harmonic orbit correction and fast betatron1971

tune jump at strongest depolarizing resonances [13] (Fig. 9.16). Experiments were1972

performed to assess the possibility of polarization transmission in strong focusing1973

synchrotrons, and polarization lifetime in colliders [14]. Acceleration of polarized1974

deuteron was achieved in the late 1970s, when sources where made available [15].1975

9.2 Basic Concepts and Formulæ1976

The synchrotron is based on two key principles. On the one hand, a slowly varying1977

magnetic field to maintain a constant orbit during acceleration,1978

B(t) × ρ = p(t)/q, ρ = constant, (9.1)

with p(t) the particle momentum and ρ the bending radius in the dipoles. On the other1979

hand, on synchronous acceleration for longitudinal phase stability. In a regime where1980

the velocity change with energy cannot be ignored (non-ultrarelativistic particles),1981

the latter requires a modulation of the accelerating voltage frequency so to satisfy1982

frf(t) = h frev(t) (9.2)

Synchronism between accelerating voltage oscillation and the revolution motion1983

keeps the bunch on the synchronous phase at traversal of the accelerating gaps.1984

Synchronous acceleration is technologically simpler in the case of electrons, as1985

frequency modulation is unnecessary beyond a few MeV; for instance, from v/c =1986

0.9987 at 10 MeV to v/c → 1 the relative change in revolution frequency amounts1987

to δ frev/ frev = δβ/β < 0.0013.1988
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These are two major evolutions compared to the cyclotron, where, instead, the1989

magnetic field is fixed - the reference orbit spirals out, and, by virtue of the isochro-1990

nism of the orbits, the oscillating voltage frequency is fixed as well.1991

A fixed orbit reduces the radial extent of individual guiding magnets, allowing a1992

ring structure comprised of a circular string of dipoles. For the sake of comparison:1993

a synchrocyclotron instead uses a single, massive dipole; increased energy requires1994

increased radial extent of the magnet to allow for the greater bending field integral1995

(i.e.,
∮

B dl = 2πRmaxB̂ = pmax/q), thus a volume of iron increasing more than1996

quadratically with bunch rigidity.1997

One or the other of the weak index (−1 < k < 0, Sect. 4.2.2) and/or wedge1998

focusing (Sect. 15.3.1) are used in weak focusing synchrotrons. Transverse stability1999

was based on the latter at Argonne ZGS (Zero-Gradient Synchrotron: the main2000

magnet had no field index); ZGS accelerated polarized proton beams, weak focusing2001

resulted in weak depolarizing resonances, an advantage in that matter [14].2002

Due to the necessary ramping of the field, and of the RF frequency to follow,2003

in order to maintain a constant orbit, the synchrotron is a pulsed accelerator, the2004

acceleration is cycled, from injection to top energy, repeatedly. The repetition rate2005

of the acceleration cycle depends on the type of power supply. If the ramping uses a2006

constant electromotive force (E=V+Z I is constant), then2007

B(t) ∝ (1 − e−
t
τ ) = 1 −

[
1 −

( t

τ

)
+

( t

τ

)2
− ...

]
≈ t

τ
(9.3)

essentially linear; ÛB = dB/dt does not exceed a few Tesla/second: the repetition rate2008

of the acceleration cycle if of the order of a Hertz. If instead the magnet winding2009

is part of a resonant circuit then the field oscillates from an injection threshold to a2010

maximum value, B(t) : B0 → B0 + B̂, as in the betatron; the repetition rate is up to2011

a few tens of Hertz. In both cases anyway B imposes its law and the other quantities2012

comprising the acceleration cycle (RF frequency in particular) will follow B(t).2013

For the sake of comparison: in a synchrocyclotron the field is constant, thus2014

acceleration can be cycled as fast as the swing of the voltage frequency allows2015

(hundreds of Hz are common practice); assume a conservative 10 kVolts per turn,2016

thus of the order of 10,000 turns to 100 MeV, with velocity 0.046 < v/c < 0.432017

from 1 to 100 MeV, proton. Take v ≈ 0.5c to make it simple, an orbit circumference2018

below 30 meter, thus the acceleration takes of the order of 104 × C/0.5c ≈ms range,2019

potentially a repetition rate in kHz range, more than an order of magnitude beyond2020

the reach of a rapid-cycling pulsed synchrotron.2021

9.2.1 Periodic Stability2022

This section introduces the various components of the transverse focusing and the2023

conditions for periodic stability in a weak focusing synchrotron. It builds on material2024

introduced in Chap. 4, Classical Cyclotron.2025
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9.2.1.1 Closed orbit2026

The concept is found in the betatron, which accelerates particles on a constant orbit2027

(Chap. 7). The closed orbit is fixed, and maintained during acceleration by ensuring2028

that the relationship Eq. 9.1 is satisfied. In a perfect ring, the closed orbit is along an2029

arc in the bending magnets and straight along the drifts, Fig. 9.5.2030

Particle motion is defined in a moving frame (O;s,x,y) whose origin coincides2031

with the location of an ideal particle following the reference orbit. The moving frame2032

s axis is tangent to the reference orbit, its transverse horizontal axis x is normal to2033

the s axis, its vertical axis y is normal to the (s, x) plane (Fig. 4.8, Sect. 4.2.2).2034

Fig. 9.5 A 2π/4 axially
symmetric structure with
four drift spaces. Orbit
length on reference mo-
mentum p0 is C = 2πρ0 + 8l.
(O;s,x,y) is the moving frame,
along the reference orbit.
The orbit for momentum
p = p0 + ∆p (∆p < 0,
here) is at constant distance
∆x =

ρ0
1−n

∆p

p0
=

R
(1+k)(1−n)

∆p

p0
from the reference orbit

ρ

p

ρ
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9.2.1.2 Transverse Focusing2035

Radial motion stability around a reference closed orbit in an axially symmetric dipole2036

field requires a field index (Sect. 4.2.2),2037

n = − ρ0

B0

∂By

∂x

����
x=0, y=0

(9.4)

a quantity evaluated on the reference arc in the dipoles, satisfying the weak focusing2038

condition (Eq. 4.11 with n = −k)2039

0 < n < 1 (9.5)

This condition can be obtained with a tapered gap (as in SATURNE dipoles, Fig. 9.2)2040

causing the magnetic field to decrease slowly with radius, so resulting in both axial2041
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and radial focusing (Figs. 9.6, 9.7). Note the sign convention here, the cyclotron uses2042

the opposite sign (Eq. 4.10). This condition holds regardless of the presence of drifts2043

or not. Adding drift spaces between the dipoles, the reference orbit is comprised of2044

arcs of radius ρ0 in the magnets, and straight segments along the drift spaces that2045

connect these arcs. This requires defining two radii, namely,2046

n=0

αO’

p

p

O

O"

∆x
p n=1

ρ

Fig. 9.6 Geometrical focusing: in a sector
dipole with focusing index n = 0, parallel in-
coming rays of equal momenta experience the
same curvature radius ρ, their trajectories con-
verge as outer trajectories have a longer path in
the field, inner ones shorter. An index value n=1
cancels that effect: parallel incoming rays exit
parallel

F
B=B y    

BF
I

I

r

Magnet pole, South

Magnet pole, North

plane
Median

B

y

g
(r

)

Fig. 9.7 Axial motion stability requires proper
shaping of field lines: By has to decrease with
radius. The Laplace force pulls a positive charge
with velocity pointing out of the page, at I,
toward the median plane. Increasing the field
gradient (n closer to 1, gap opening up faster)
increases the focusing

(i) the magnet curvature radius ρ0,2047

(ii) an average radius R = C/2π = ρ0 +Nl/π (with C the length of the reference2048

closed orbit and 2l the drift length) (Fig. 9.5) which also writes2049

R = ρ0(1 + k), k =
Nl

πρ0
(9.6)

Adding drift spaces decreases the average focusing around the ring.2050

Fig. 9.8 In a sector dipole
with radial index n , 0,
closed orbits follow arcs
of constant field. A closed
orbit at p0 + ∆p follows
an arc of radius ρ0 + ∆ρ,
∆ρ = ∆p/(1 + n)qB0

90
o

α

o
90

θ

p

O

ρ
p’>p

ρ∆

0
0

p"<p

0

0
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Geometrical focusing2051

The limit n → 1 of the transverse motion stability domain corresponds to a cancel-2052

lation of the geometrical focusing (Fig. 9.6): in a constant field dipole (radial field2053

index n=0) the longer (respectively shorter) path in the magnetic field for parallel2054

trajectories entering the magnet at greater (respectively smaller) radius result in2055

convergence. This effect is cancelled, i.e., trajectory angle is the same whatever the2056

entrance radius, if the curvature center is made independent of the entrance radius:2057

OO′
= 0, O′′O = 0. This occurs if trajectories at an outer (inner) radius experience a2058

smaller (greater) field such as to satisfy BL = Bρ α = Cst . Differentiating Bρ = Cst
2059

gives ∆B
B
+
∆ρ

ρ
= 0, with ∆ρ = ∆x, so yielding n = − ρ0

B0

∆B
∆x
= 1. The focal distance2060

associated with the curvature is (Eq. 4.12 with R = ρ0) f =
ρ2

0
L . Optical drawbacks2061

of the weak focusing method include the weakness of the focusing and the absence2062

of independent radial and axial focusing.2063

Wedge Focusing2064

Entrance and exit wedge angles may be used to ensure transverse focusing, Fig. 9.9:2065

opening the magnetic sector increases the horizontal focusing (and decreases the2066

vertical focusing); closing the magnetic sector has the reverse effect (see Sect. 15.3.1).2067

ε<0

p

p

p

∆x
k=0

α

O

field is

field is
missing

added
p

p

p

O

α

n=0
∆x

field is
added

field is
missing

ε>0

Fig. 9.9 Left: a focusing wedge (ε < 0); opening the sector increases horizontal focusing and
decreases vertical focusing. Right: a defocusing wedge (ε > 0), closing the sector, has the reverse
effect. This is the origin of the focusing in the ZGS zero-gradient dipoles

In a point transform approximation, at the wedge the trajectory undergoes a local2068

deviation proportional to the distance to the optical axis, amounting to2069

∆x ′
=

tan ε

ρ0
∆x, ∆y

′
= − tan(ε − ψ)

ρ0
∆y (9.7)

The ψ angle component is a correction for the fringe field extent (Eq. 15.21); the2070

effect of the latter, of the first order on the vertical focusing, is of second order2071

horizontally.2072
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Profiling the magnet gap in order to adjust the focal distance complicates the2073

magnet; a parallel gap, n = 0, makes it simpler, for that reason edge focusing may2074

be preferred. Wedge vertical focusing in the ZGS (ε > 0) was at the expense of2075

horizontal geometrical focusing (Fig. 9.6). This was an advantage though, for the2076

acceleration of polarized beams, as radial field components (which are responsible for2077

depolarization) were only met at the EFBs of the eight main dipoles, and weak [12].2078

Preserving beam polarization at high energy required tight control of the tunes, this2079

was achieved by pole face windings added at the ends of the dipoles [16, 17], pulsed2080

to control the amplitude detuning, resulting in a control of the tunes at 0.01 level.2081

9.2.1.3 Betatron motion2082

The first order differential equations of motion in the moving frame (Fig. 9.5) derive2083

from the Lorentz equation2084

dmv

dt
= qv × B ⇒ m

d

dt





ds
dt

s
dx
dt

x
dy

dt
y




= q





(
dx
dt

By − dy

dt
Bx

)
s

− ds
dt

Byx
ds
dt

Bxy





(9.8)

Motion in a weak index dipole field is solved in Sect. 4.2.2, Classical Cyclotron: in2085

the latter substitute ρ to R, n = − ρ0
B0

∂By

∂x
to −k, evaluated on the reference orbit.2086

Taylor expansions of the transverse field components in the moving frame (Eq. 4.6)2087

lead to2088

By(ρ)|y=0 = B0(1 − n x
ρ0
) + O(x2)

Bx(0 + y) = −n
B0
ρ0
y + O(y3) (9.9)

Assume transverse stability: 0 < n < 1; in the approximation ds ≈ vdt (Eq. 4.13)2089

Eqs. 9.8, 9.9 lead to the differential equations of motion2090

d2x

ds2
+

1 − n

ρ2
0

x = 0,
d2

y

ds2
+

n

ρ2
0

y = 0 (9.10)

It results that, in an S-periodic structure comprised of gradient dipoles, wedges2091

and drift spaces, the differential equation of motion takes the general form of Hill’s2092

equation, a second order differential equation with periodic coefficient, namely (with2093

u standing for x or y),2094





d2u

ds2
+ Ku(s)u = 0

Ku(s + S) = Ku(s)
with





in dipoles :

{
Kx =

1−n
ρ2

0

Ky =
n

ρ2
0

at a wedge at s = s0 : K x
y
=

± tan ε
ρ0

δ(s − s0)
in drift spaces : 1

ρ0
= 0, Kx = Ky = 0

(9.11)
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Ku(s) is S-periodic, S = 2πR/N (S = C/4 for instance in a 4-periodic ring,2095

Figs. 9.1, 9.5).2096

The solution of Eqs. 9.11 is not as straightforward as in the cyclotron where Ku is2097

constant around the ring (Eq. 4.14), which results in a sinusoidal motion (Eq. 4.16)2098

- the latter is on the other hand a reasonable approximation, see below, Weak focusing2099

approximation. G. Floquet has established [18] that the two independent solutions2100

of Hill’s second order differential equation have the form [19]2101

��������

u1(s) =
√
βu(s) e

i
∫ s

0

ds

βu(s)

du1(s)/ds =
i − αu(s)
βu(s)

u1(s)
and

����
u2(s) = u∗1(s)
du2(s)/ds = du∗1(s)/ds

(9.12)

wherein βu(s) and αu(s) = −β′u(s)/2 are S-periodic functions, from what it results2102

that2103

u 1
2
(s + S) = u 1

2
(s) e±iµu (9.13)

wherein2104

µu =

∫ s

s0

ds

βu(s)
(9.14)

is the betatron phase advance at s, from the origin s0. A real solution of Hill’s2105

equation is the linear combination A u1(s) + A∗ u∗2(s). With A = 1
2

√
εu/πeiφ

2106

following conventional notations, φ the phase of the motion at the origin s = s0, the2107

general solution of Eq. 9.11 writes2108

��������

u(s) =
√
βu(s)εu/π cos

(∫ s

s0

ds

βu
+ φ

)

u′(s) = −
√
εu/π
βu(s)

sin

(∫ s

s0

ds

βu
+ φ

)
+ αu(s) cos

(∫ s

s0

ds

βu
+ φ

) (9.15)

An invariant of the motion, known as the Courant-Snyder invariant, is2109

1

βu(s)
[
u2
+ (αu(s)u + βu(s)u′)2

]
=

εu

π
(9.16)

At a given azimuth s of the periodic structure the observed turn-by-turn motion2110

lies on that ellipse (Fig. 9.10). The form and inclination of the ellipse depend on2111

the observation azimuth s via the respective local values of αu(s) and βu(s), but2112

its surface εu is invariant. Motion along the ellipse is clockwise, as can be figured2113

from Eq. 9.15 considering an observation azimuth s where the ellipse is upright,2114

αu(s) = 0. The phase advance over a turn (from one position to the next on the2115

ellipse, Fig. 9.10) in an N-periodic ring yields the wave number2116

νu = Nµu =

∫ s0+NS

s0

ds

βu(s)
= N

∫

period

ds

βu(s)
(9.17)
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Fig. 9.10 Courant-Snyder
invariant and turn-by-turn
harmonic motion along the
invariant, observed at some
azimuth s. The form and tilt-
angle of the ellipse depend on
the observation azimuth s but
its surface εu is invariant

T

dx/ds

x

ε/π=constant

CS invariant

1

2

5

63

4

7

Weak focusing approximation2117

In a cylindrically symmetric structure a sinusoidal motion is the exact solution of the2118

first order differential equations of motion (Eqs. 4.15, 4.16, Classical Cyclotron Chap-2119

ter), the coefficients Kx = (1 − n)/R2
0 and Ky = n/R2

0 are constant (s-independent).2120

Adding drift spaces results in Hill’s differential equation with periodic coefficient2121

K(s+S) = K(s) (Eq. 9.11), and in a pseudo harmonic solution (Eq. 9.15). Due to the2122

weak focusing the beam envelope is only weakly modulated (see below), thus so is2123

βu(s). In a practical manner, the modulation of βu(s) does not exceed a few percent,2124

this justifies introducing the average value βu to approximate the phase advance by2125

∫ s

0

ds

βu(s)
≈ s

βu

= νu
s

R
(9.18)

The right equality is obtained by applying this approximation to the phase advance2126

per period, namely (Eq. 9.14) µu =
∫ s0+S

s0

ds

βu(s)
≈ S/βu, and introducing the wave2127

number of the N-period optical structure νu =
Nµu

2π =
phase advance over a turn

2π so that2128

βu =
R

νu
(9.19)

the wavelength of the betatron oscillation around the ring. With k ≪ 1 and using2129

Eq. 9.23,2130

βx =
ρ0(1 + k/2)
√

1 − n
, βy =

ρ0(1 + k/2)
√

n
(9.20)

Substituting νu
s
R

to
∫

ds
βu(s) in Eq. 9.15 yields the approximate solution2131

�������

u(s) ≈
√
βu(s)εu/π cos

(
νu

s

R
+ φ

)

u′(s) ≈ −
√
εu/π
βu(s)

sin
(
νu

s

R
+ φ

)
+ αu(s) cos

(
νu

s

R
+ φ

) (9.21)
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Beam envelopes2132

The beam envelope û(s) (with u standing for x or y) is determined by the particle of2133

maximum invariant εu/π, it is given at all s by2134

ûenv(s) = ±
√
βu(s)

εu

π
(9.22)

As βu(s) is S-periodic, so is the envelope, û(s+S) = û(s). In a cell with symmetries,

Fig. 9.11 Multi-turn particle
excursion along the ZGS 2-
dipole 43 m cell. The motion
extrema (Eq. 9.22) tangent
the envelops, respectively
horizontal (red), and vertical
(blue). Envelops have the
symmetry of the cell 0 5 10 15 20 25 30 35 40
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07-10-2020                                                                      
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2135

beam envelops feature the same symmetries, as in Fig. 9.11 for instance: a symmetry2136

with respect to the center of the cell; envelop extrema are at azimuth s of βu(s)2137

extrema, i.e. where dû(s)/ds ∝ β′u(s) = 0 or αu = 0 as β′u = −2αu.2138

Working point2139

The “working point” of the synchrotron is the wave number couple (νx, νy) at which2140

the accelerator is operated, it fully characterizes the focusing. In a structure with2141

cylindrical symmetry (such as the Classical Cyclotron) νx =
√

1 − n and νy =
√

n2142

(Eq. 4.17) so that ν2
x + ν

2
y = 1: when the radial field index n is changed the working2143

point stays on a circle of radius 1 in the stability diagram (or “tune diagram”,2144

Fig. 9.12). If drift spaces are added, from Eqs. 9.19, 9.20, with 1 + k
2 ≈

√
R/ρ02145

(Eq. 9.6), it comes2146

νx ≈
√

(1 − n) R

ρ0
, νy ≈

√

n
R

ρ0
, ν2

x + ν
2
y ≈ R

ρ0
(9.23)

thus the working point is located on the circle of radius
√

R/ρ0 > 1 (Fig. 9.12), tunes
can not exceed the limits

0 < νx, y .
√

R/ρ0

Horizontal and vertical focusing are not independent (Eq. 9.11): if νx increases then2147

νy decreases and reciprocally. This is a lack of flexibility which the advent of strong2148
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Fig. 9.12 Location of the
working point in the tune dia-
gram. (A) field with revolution
symmetry: (νx, νy ) is on a cir-
cle of radius 1; (B) sector field
with index 0 < n < 1 and drift
spaces: (νx, νy ) is on a circle

of radius (
√
R/ρ0); (C) strong

focusing, AG index |n | ≫ 1
or separated function, νx and
νy are large, set independently  0.0 0.5 1. 1.5 2.

  0

  1

  2.

  ν                                                    

  ν                                                    

  y                                                    

  x                                                    

      (B) Revolution symm.    

          + drifts            

           (A) Revolution                                  

            symmetry                           

            (C) AG or separated               

             function focusing              

focusing will overcome by providing two knobs allowing separate adjustment of the2149

tunes.2150

Off-momentum orbits; periodic dispersion2151

In the linear approximation in ∆p/p0, a momentum offset ∆p = p− p0 changes mv to2152

mv(1+∆p/p0) in Eq. 9.8; this changes the horizontal equation of motion (Eq. 9.10)2153

to2154

d2x

ds2
+ Kx x =

1

ρ0

∆p

p0
, or

d2x

ds2
+ Kx

(
x − 1

ρ0Kx

∆p

p0

)
= 0 (9.24)

A change of variable x − 1
Kxρ0

∆p

p0
→ x (with 1/ ρ0Kx = ρ0/(1 − n)) restores the2155

unperturbed equation of motion; thus orbits of different momenta p = p0 + ∆p are2156

distant2157

∆x =
ρ0

1 − n

∆p

p0
(9.25)

from the reference orbit (Fig. 9.8). Introduce the geometrical radius R = (1 + k)ρ02158

(Eq. 9.6) to account for the added drifts; this yields the dispersion function2159

Dx =
∆x

∆p/p0
≡ ∆R

∆p/p0
=

R

(1 − n)(1 + k) =
ρ0

1 − n
, constant, positive (9.26)

Dx is the chromatic dispersion of the orbits, an s-independent quantity: in a structure2160

with axial symmetry, comprising drift sections (Fig. 9.5) or not (classical and AVF2161

cyclotrons for instance), the ratio ∆x
ρ0 ∆p/p0

is independent of the azimuth s, the2162

distance of a chromatic orbit to the reference orbit is constant around the ring.2163
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Given that n < 1,2164

- higher momentum orbits, p > p0, have a greater radius,2165

- lower momentum orbits, p < p0, have a smaller radius.2166

The horizontal motion of an off-momentum particle is a superposition of the2167

betatron motion (solution of Hill’s Eq. 9.21 with δp/p = 0) and of a particular2168

solution of the inhomogeneous equation (δp/p , 0), namely2169

x(s) =
√
βu(s)εu/π cos

(
νu

s

R
+ φ

)
+

ρ0

1 − n

∆p

p0
(9.27)

whereas the vertical motion is unchanged.2170

Chromatic orbit length2171

In an axially symmetric structure the difference in closed orbit length ∆C = 2π∆R2172

resulting from the difference in momentum arises in the dipoles, as all orbits are2173

parallel in the drifts (Fig. 9.5). Hence, from Eq. 9.26, the relative closed orbit2174

lengthening factor, or momentum compaction2175

α =
∆C
C

/
∆p

p0
≡ ∆R

R

/
∆p

p0
=

1

(1 − n)(1 + k) ≈ 1

ν2
x

(9.28)

with k = Nl/πρ0 (Eq. 9.6). Note that the relationship α ≈ 1/ν2
x between momentum2176

compaction and horizontal wave number established for a revolution symmetry2177

structure (Eq. 4.21) still holds when adding drifts.2178

9.2.2 Acceleration2179

In a synchrotron, the field B is varied during acceleration (a function performed by
the magnet power supply) concurrently with the variation of the bunch momentum
p (a function performed by the accelerating cavity) in such a way that the beam
is maintained on the design orbit. Given the energies involved, the magnet supply
imposes its law B(t) (Fig. 9.13) and the cavity follows, the best it can. The accelerating
voltage V̂(t) = sinωrft is maintained in synchronism with the revolution motion, its
angular frequency satisfying

ωrf = hωrev = h
c

R

B(t)
√(

m0c
qρ

)2
+ B2(t)

Typically, for a C = 2πR ≈ 70 m circumference ring (SATURNE I weak focusing
synchrotron, Fig. 9.1; cf. Exercise 9.1, parameters in Tab. 9.1), from β = v/c ≈ 0.09
at injection (3.6 MeV protons) to β ≈ 1 at top energy (3 GeV), the revolution period
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Fig. 9.13 Cycling B(t) in a pulsed synchrotron. Ignoring saturation, B(t) is proportional to the
magnet power supply current I (t). Beam injection occurs at low field, in the region of A, extraction
occurs at top energy, on the high field plateau. (AB): field ramp up (acceleration); (BC): flat top;
(CD): field ramp down; (DA’): thermal relaxation. (AA’): repetition period; (1/AA’): repetition rate;
slope: ramp velocity ÛB = dB/dt (Tesla/s).

Trev = C/βc and frequency ωrev/2π = 1/Trev span

{
Trev : 2.6 µs → 23 µs
frev : 390 kHz → 4.3 MHz

Energy gain2180

The variation of the particle energy over a turn amounts to the work of the force2181

F = dp/dt = qρdB/dt on the charge at the cavity, namely2182

∆W = F × 2πR = 2πRqρ ÛB (9.29)

In a slow-cycling synchrotron ÛB is usually constant over most of the acceleration
cycle (Eq. 9.3), thus so is ∆W . At SATURNE I for instance

∆W

q
= 2πRρ ÛB = 68.9 × 8.42 × 1.8 = 1044 volts

The field ramp lasts

∆t = (Bmax − Bmin)/ ÛB ≈ Bmax/ ÛB = 0.8 s

The number of turns to the top energy (Wmax ≈ 3 GeV) is

N =
Wmax

∆W
=

3 109 eV

1044 eV/turn
≈ 3 106turns

The dependence of particle mass on field writes
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m(t) = γ(t)m0 =
qρ

c

√(
m0c

qρ

)2

+ B(t)2

Adiabatic damping of the betatron oscillations2183

Particle momentum increases at the accelerating gap, this results in a decrease
of the amplitude of betatron oscillations (conversely, an increase if the cavity is
decelerating). The mechanism is sketched in Fig. 9.14 (with u standing indifferently
for the x or y coordinate): the slope, respectively before and after (index 2) the cavity
is

du

ds
=

m du
dt

m ds
dt

=

pu

ps
,

du

ds

����
2

=

m du
dt

m ds
dt

�����
2

=

pu,2

ps,2

As the kick in momentum is longitudinal, dpu/dt = 0 thus pu,2 = pu, the increase

trajectory
w/o cavity

with cavity
trajectory

p +  ps ∆

p +  pp

p ss

∆

p +  pp s
s

u
p

cavity

u

u

A

B

R du A : cavity entrance
B : cavity exit

is reduced

amplitude

phase
advance

ν ds

Fig. 9.14 Adiabatic damping of betatron oscillations, here from trajectory incidence u′
= pu/ps

at cavity entrance, to u′
2 = pu/(ps + ∆ps) at cavity exit. In the transverse phase space: decrease of

the particle phase space invariant resulting from ∆
(
du
ds

)

in momentum is purely longitudinal, ps,2 = ps + ∆ps . Thus

du

ds

����
2

=

pu

ps + ∆ps
≈ pu

ps
(1 − ∆ps

ps
)

and as a consequence the slope du/ds varies across the cavity,

∆

(
du

ds

)
=

du

ds

����
2

− du

ds
= −du

ds

∆ps

ps

The variation of the slope is proportional to the slope, with opposite sign if∆p/p > 02184

(acceleration) thus a decrease of the slope. This variation has two consequences on2185

the betatron oscillation (Fig. 9.14):2186
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- a change of the betatron phase,2187

- a modification of the betatron amplitude.2188

Coordinate transport2189

at the cavity writes

{
u2 = u

u′
2 ≈ pu

ps
(1 − dp

p
) = u′(1 − dp

p
) . In matrix form,

(
u2

u′
2

)
=2190

[C]
(

u

u′

)
with2191

[C] =
[
1 0

0 1 − dp

p

]

(9.30)

and det[C] = 1 − dp

p
, 1: the system is non-conservative, the surface of the beam2192

ellipse in phase space is not conserved. Assume one cavity in the ring and note2193

[T] × [C] the one-turn coordinate transport matrix with origin at entrance of the2194

cavity. Its determinant is det[T] × det[C] = det[C] = 1 − dp

p
; the variation of the2195

transverse ellipse surface satisfies εu = (1− dp

p0
)ε0 or, with dεu = εu−ε0, dεu

εu
= − dp

p0
,2196

the solution of which is2197

p εu = constant, or βγεu = constant (9.31)

Over N turns the coordinate transport matrix is [TN ] = ([T][C])N , thus the ellipse2198

surface changes by a factor det[C]N = (1 − dp

p
)N ≈ 1 − N

dp

p
.2199

Phase stability2200

“Synchrotron motion” designates the mechanism of phase stability, or longitudinal2201

focusing (Fig. 9.15), that stabilizes the longitudinal motion of a particle in the vicinity2202

of a synchronous phase, φs, in virtue of2203

(i) the presence of an accelerating cavity with its frequency indexed on the2204

revolution time,2205

(ii) with the bunch centroid positioned either on the rising slope of the oscillating2206

voltage (low energy regime), or on the falling slope (high energy regime).2207

The synchronous (or “ideal”) particle follows the equilibrium trajectory around
the ring (the reference closed orbit, about which all other particles will undergo a

betatron oscillation), its velocity satisfies v(t) = qBρ(t)
m

; at each turn it reaches the
accelerating gap when the oscillating voltage is at the synchronous phase φs, and
undergoes an energy gain

∆W = qV̂ sin φs

The condition | sin φs | < 1 imposes a lower limit to the cavity voltage for acceleration
to happen, namely, after Eq. 9.29,
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V̂ > 2πRρ ÛB

V(t)

A B A’ B’ B’’

∆φ=6π

1 turn, h=3

O φ φφ
S,A’ S,A’’S,A

φ
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sφV sin average 
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ω
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energy gain
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^

Fig. 9.15 A sketch of the mechanism of phase stability, h = 3 in this example. Below transition
phase stability occurs for a synchronous phase taken at either one of A, A’, A” arrival times at the
gap: a particle with a little greater energy compared to the synchronous particle goes around the
ring more rapidly than the latter: if both are launched together, the former arrives earlier at the
voltage gap (at φ < φs,A) and thus experiences weaker acceleration; a particle with a little lower
energy compared to the synchronous particle, is slower, it arrives at the gap later, φ > φs,A, and
thus experiences greater voltage; in both cases the particle is pulled towards the synchronous phase,
this results in an overall stable oscillatory motion around the synchronous phase. Beyond transition
the stable phase is at either one of B, B’, B’ locations: a particle which is less energetic than the
synchronous particle arrives earlier, φ < φs,B, so experiencing a greater voltage, and inversely,
resulting in overall stable synchrotron motion.

Referring to Fig. 9.15, the synchronous phase can be placed on the left (A A’ A”...2208

series in the Figure, or on the right (B B’ B”... series) of the oscillating voltage crest.2209

One and only one of these two possibilities, and which one depending upon the optical2210

lattice and on particle energy, ensures that particles in a bunch remain grouped in2211

the vicinity of the synchronous particle. The transition is between two time-of-flight2212

regimes: a particle which gains momentum compared to the synchronous particle2213

has a greater velocity, while2214

- in the high bunch energy regime the increase in path length around the ring2215

is faster than the increase in velocity (velocity essentially does not even change2216

in ultrarelativistic regime), a revolution around the ring takes more time (this is the2217

classical cyclotron and synchrocyclotron regime, and as well the high energy electron2218

synchrotron regime); consider such a particle, arriving at the accelerating gap late2219

(φ(t) > φs), in order for it to be pulled toward bunch center (i.e., take less time2220

around the ring) it has to undergo deceleration; this is the B series, above transition;2221

- in the low bunch energy regime velocity increase is faster than path length2222

increase, thus a revolution around the ring is faster; consider such a particle, arriving2223

at the accelerating gap early (φ(t) < φs), in order for it to be pulled toward bunch2224

center (i.e., take more time around the ring) it has to be slowed down, it has to2225

undergo deceleration; this is the A series, below transition.2226
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Transition energy2227

The transition between the two time-of-flight regimes occurs at
dTrev

Trev
= 0. With2228

T = 2π/ω = C/v, this can be written
dωrev

ωrev
= −dTrev

Trev
=

dv

v
− dC

C . With dv
v
=

1
γ2

dp

p
2229

and momentum compaction α =
dC
C / dp

p
, (Eq. 9.28), this can be written2230

dωrev

ωrev
= −dTrev

Trev
=

(
1

γ2
− α

)
dp

p
= η

dp

p
(9.32)

which introduces the phase-slip factor2231

η =

kinematics
︷︸︸︷

1

γ2
− α︸︷︷︸

lattice

=

1

γ2
− 1

γ2
tr

(9.33)

The transition γtr appears to be a property of the lattice.2232

In a weak focusing lattice γtr = 1/
√
α ≈ νx (Eqs. 4.21, 9.28), thus the phase2233

stability regime is2234

below transition, i.e. φs < π/2, if γ < νx

above transition, i.e.φs > π/2, if γ > νx (9.34)

In a weak focusing synchrotron the horizontal tune νx =
√
(1 − n)R/ρ0 (Eq. 9.23)2235

may be >< 1, and subsequently γtr > 1 is a possibility. There is no transition-gamma2236

if νx < 1. At SATURNE I for instance, with νx ≈ 0.7 (Tab. 9.1) thus γtr < 1, ramping2237

in energy did not require transition-gamma crossing3.2238

9.2.3 Depolarizing Resonances2239

The field index is essentially zero in the ZGS, transverse focusing is ensured by2240

wedge angles at the ends of the height dipoles, the only location where non-zero2241

radial field components are found. The latter are weak, as a consequence so are2242

depolarizing resonances: “As we can see from the table, the transition probability2243

[ from spin state ψ1/2 to spin state ψ−1/2] is reasonably small up to γ = 7.1” [12], i.e.2244

Gγ = 12.73, p = 6.6 GeV/c; the table referred to stipulates a transition probability2245

P1
2 ,−

1
2
< 0.042, whereas resonances beyond that energy range feature P1

2 ,−
1
2
> 0.36.2246

3 Transition-gamma crossing, or “gamma jump”, is a common beam manipulation during acceler-
ation in strong focusing synchrotrons, it requires an RF phase jump, the technique is addressed in
Chapter 10.
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Beam depolarization up to 6 GeV/c, under the effect of these resonances, is illustrated2247

in Fig. 9.16.2248

In a synchrotron using gradient dipoles, particles experience radial fields Bx(y) =2249

−n
B0
ρ0
y as they undergo vertical betatron oscillations [12, 20, 21]. As n is small these2250

radial field components are weak, and so is their effect on spin motion.2251

Assuming a defect-free ring, the vertical betatron motion excites “intrinsic” spin
resonances, located at

GγR = k P ± νy, k ∈ N

with P the period of the ring. In the ZGS for instance, νy ≈ 0.8 (Tab. 9.2), the ring
is P=4-periodic, thus GγR = 4k ± 0.8. Strongest resonances are located at

GγR = mk P ± νy

with m the number of cells per superperiod [22, Sec. 3.II]. In the ZGS, m=2 thus2252

strongest resonances occur at GγR = 2 × 4k ± 0.8 = 7.2 (p = 3.65 GeV/c), 8.82253

(4.51 GeV/c), 15.2 (7.9 GeV/c), ... (Fig. 9.16).

Fig. 9.16 Polarization loss
at the ZGS [23] through the
strong intrinsic resonances
GγR = 7.2 (p = 3.65 GeV/c)
and 8.8 (4.51 GeV/c) (black
circles). A tune jump method
preserves polarization (empty
circles)

2254

In the presence of vertical orbit defects, non-zero periodic transverse fields are
experienced along the closed orbit, they excite “imperfection”, aka “integer”, depo-
larizing resonances, located at

GγR = k, k ∈ N

In the case of systematic defects the periodicity of the orbit is that of the lattice, P,
imperfection resonances are located at GγR = kP. Strongest imperfection resonances
are located at [22, Sec. 3.II]

GγR = mk P
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Spin precession axis. Resonance width2255

Consider the spin vector S(θ) = (Sη, Sξ, Sy) of a particle in the laboratory frame,2256

with θ the orbital angle around the accelerator. Introduce the projection s(θ) of S in2257

the median plane2258

s(θ) = Sη(θ) + jSξ (θ) (and S2
y = 1 − s2) (9.35)

Fig. 9.17 Modulus of the
horizontal spin component.
s = 1/2 at distance ∆ =
±
√

3ǫR from GγR
-3 -2 -1  0  1  2  3

1

0.5

s(∆/εR)

∆/εR

-√3 √3

2259

Fig. 9.18 Near an integer
resonance, at any azimuth
θ around the ring spins
S(m) (m is the turn num-
ber, S(m) started vertical,
here) precess at frequency

ω =
√
∆2
+ |ǫR |2 around a

stationary axis n0(θ), whose
orientation varies along the
ring. n0 is aligned along S,
average of S(m) over turns

  n 0

x

s

y

S
_

S
(0

)

S
(m

)

In the case of a stationary solution of the spin motion, viz. stationary spin preces-2260

sion axis around the ring (Fig. 9.18) [21, Sect. 3.6.1], s satisfies [21] (Fig. 9.17)2261

s2
=

1

1 +
∆

2

|ǫR |2

(9.36)

with ∆ = Gγ −GγR the distance to the resonance; thus the resonance width appears2262

to be a measure of its strength. The quantity of interest is the angle, φ, of the spin2263
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Fig. 9.19 Dependence of
polarization on the distance
to the resonance. For instance
Sy = 0.99, 1% depolarization,
corresponds to ∆ = ±7 |ǫR |.
On the resonance, ∆ = 0,
the precession axis lies in the
median plane, Sy = 0

-6 -4 -2  0  2  4  6

7-7

 0.99  0.99

1

0.5

Sy(∆/εR)

∆/εR

precession direction to the vertical axis, given by (Fig. 9.19)2264

cos φ(∆) ≡ Sy(∆) =
√

1 − s2
=

∆/|ǫR |√
1 + ∆2/|ǫR |2

(9.37)

On the resonance, ∆ = 0, the spin precession axis lies in the bend plane: φ = ±π/2.2265

Sy = 0.99 (1% depolarization) corresponds to a distance to the resonance ∆ = 7|ǫR |,2266

spin precession axis at an angle φ = acos(0.99) = 8o from the vertical.2267

Conversely, given Sy ,2268

∆
2

|ǫR |2
=

S2
y

1 − S2
y

(9.38)

The precession axis is common to all spins, Sy is a measure of the polarization along
the vertical axis,

Sy =
N+ − N−

N+ + N−

wherein N+ and N− denote the number of particles in spin states 1
2 and − 1

2 respec-2269

tively.2270

Things complicate a little in the vicinity of an intrinsic resonance [21, Sect. 3.6.2],2271

the precession axis is not stationary, it precesses itself around the vertical, Fig. 9.20.2272

Resonance crossing2273

Crossing an isolated depolarizing resonance (Figs. 9.16, 9.21) causes a loss of2274

polarization given by the Froissart-Stora formula [24] [21, Sect. 2.3.6], ,2275

Pf

Pi

= 2e
− π

2
|ǫR |2
α − 1 (9.39)

from a value Pi upstream to an asymptotic value Pf downstream of the resonance.2276

ǫR is the strength of the resonance [21, Sect. 2.3.5], and2277
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Fig. 9.20 Near an intrinsic
resonance, spins S(m) precess
at frequency ω around an
axis n, which itself precesses
around the vertical axis at
frequency Gγ

  

x

s

y

_
S

n

G(   γ)
(ω)

S
(m

)

α = G
dγ

dθ
=

1

2π

∆E

M
(9.40)

is the crossing speed for an energy gain ∆E per turn.2278

Fig. 9.21 Vertical component
of spin motion Sy (θ) through
a weak depolarizing resonance
(Eq. 9.41). The vertical bar
is at the location of the
resonance, which coincides
with the origin of the orbital
angle
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Spin motion through weak resonances2279

Depolarizing resonances are weak up to several GeV in a weak focusing synchrotron,
as the radial and/or longitudinal fields are weak. Thus assume Sy,f ≈ Sy,i, with Sy,f

and Sy,i the asymptotic vertical spin component values respectively upstream and
downstream of the resonance; with the origin of the orbital angle taken at the
resonance (Fig. 9.21), and introducing the Fresnel integrals [21]
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C(x) =
∫ x

0
cos

( π
2

t2
)

dt, S(x) =
∫ x

0
sin

( π
2

t2
)

dt

the polarization satisfies2280

if θ < 0 :

(
Sy(θ)
Sy,i

)2

= 1 − π |ǫR |2
α

{[
1
2 − C

(
−θ

√
α

π

)]2

+

[
1
2 − S

(
−θ

√
α

π

)]2
}

if θ > 0 :

(
Sy(θ)
Sy,i

)2

= 1 − π |ǫR |2
α

{[
1
2 + C

(
θ

√
α

π

)]2

+

[
1
2 + S

(
θ

√
α

π

)]2
}

(9.41)
In the asymptotic limit,2281

Sy(θ)
Sy,i

θ−→∞−→ 1 − π

α
|ǫR |2 (9.42)

which identifies with the development of Froissart-Stora formula, Eq. 9.39, to the2282

first order in |ǫR |2/α. This approximation holds in the limit that higher order terms2283

can be neglected: |ǫR |2/α ≪ 1.2284

9.3 Exercises2285

9.1 Construct SATURNE I (weak index) synchrotron. Spin Resonances2286

Solution: page 313.2287

In this exercise, the weak focusing 3 GeV synchrotron SATURNE I is modeled.2288

Spin resonances in a weak dipole gradient lattice are observed.2289

Table 9.1 Parameters of SATURNE I weak focusing synchrotron [25]. ρ0 denotes the reference
bending radius in the dipole; the reference orbit, field index, wave numbers, etc., are taken along
that radius

Orbit length, C cm 6890
Average radius, R = C/2π cm 1096.58
Drift length, 2l cm 400
Magnetic radius, ρ0 cm 841.93
R/ρ0 = 1 + k 1.30246
Field index n, nominal 0.6
Wave numbers νx , νy , nominal 0.72, 0.89
Stability limit 0.5 < n < 0.757
Injection energy (proton) MeV 3.6
Field at injection kG 0.326
Top energy GeV 2.94
Field at top energy, Bmax kG 14.9
ÛB kG/s 18

Synchronous energy gain keV/turn 1.160
RF harmonic 2
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Fig. 9.22 A schematic layout
of SATURNE I, a 2π/4 axial
symmetry structure, com-
prised of 4 radial field index
90 deg dipoles and 4 drift
spaces. The cell in the simu-
lation exercises is taken as a
π/2 quadrant: half-drift / 90o-
dipole / half-drift

ρ
ο

    

2l

(a) Construct a model of SATURNE I 90o cell dipole in the hard-edge model,2290

using DIPOLE. Use the parameters given in Tab. 9.1, and Fig. 9.22 as a guidance.2291

For beam monitoring purposes, split the dipole in two 45odeg halves. It is judicious2292

to take RM=841.93 cm in DIPOLE, as this is the reference radius for the definition2293

of the radial index. Take an integration step size in centimeter range - small enough2294

to ensure numerical convergence, as large as doable for fast multiturn raytracing.2295

Validate the model by producing the 6 × 6 transport matrix of the cell dipole2296

(MATRIX[IFOC=0] can be used for that, with OBJET[KOBJ=5] to define a proper2297

set of paraxial initial coordinates) and checking against theory (Sect. 15.2, Eq. 15.6).2298

(b) Construct a model of SATURNE I cell, with origin at the center of the drift.2299

Find the closed orbit, that particular trajectory which has all its coordinates zero in2300

the drifts: use DIPOLE[KPOS] to cancel the closed orbit coordinates at DIPOLE2301

ends. While there, check the expected value of the dispersion (Eq. 9.26) and of2302

the momentum compaction (Eq. 9.28), from the raytracing of a chromatic closed2303

orbit - i.e., the orbit of an off-momentum particle. Plot these two orbits (on- and2304

off-momentum), over a complete turn around the ring, on a common graph.2305

Compute the cell periodic optical functions and tunes, using either MA-2306

TRIX[IFOC=11] or TWISS; check their values against theory. Check consistency2307

with previous dispersion function and momentum compaction outcomes.2308

Move the origin of the lattice at a different azimuth s along the cell: verify that,2309

while the transport matrix depends on the origin, its trace does not.2310

Produce a graph of the optical functions (betatron functions and dispersion) along2311

the cell. Check the expected average values of the betatron functions (Eq. 9.20).2312

Produce a scan of the tunes over the field index range 0.5 ≤ n ≤ 0.757. RE-2313

BELOTE can be used to repeatedly change n over that range. Superimpose the2314

theoretical curves νx(n), νy(n).2315

(c) Justify considering the betatron oscillation as sinusoidal, namely,

y(θ) = A cos(νyθ + φ)
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wherein θ = s/R, R =
∮

ds/2π.2316

(d) Launch a few particles evenly distributed on a common paraxial horizontal2317

Courant-Snyder invariant, vertical motion taken null (OBJET[KOBJ=8] can be used),2318

for a single pass through the cell. Store particle data along the cell in zgoubi.plt,2319

using DIPOLE[IL=2] and DRIFT[split,N=20,IL=2]. Use these to generate a graph2320

of the beam envelopes.2321

Using Eq. 9.22 compare with the results obtained in (b). Find the minimum2322

and maximum values of the betatron functions, and their azimuth s(min[βx]),2323

s(max[βx]). Check the latter against theory.2324

Repeat for the vertical motion, taking εx = 0, εy paraxial.2325

Repeat, using, instead of several particles on a common invariant, a single particle2326

traced over a few tens of turns.2327

(e) Produce an acceleration cycle from 3.6 MeV to 3 GeV, for a few particles2328

launched on a common 10−4 πm initial invariant in each plane. Ignore synchrotron2329

motion (CAVITE[IOPT=3] can be used in that case). Take a peak voltage V̂ = 200 kV2330

(unrealistic though, as it would result in a nonphysical ÛB (Eq. 9.29)) and synchronous2331

phase φs = 150 deg (justify φs > π/2).2332

Check the betatron damping over the acceleration range: compare with theory2333

(Eq. 9.31).2334

How close to symplectic the numerical integration is (it is by definition not2335

symplectic, being a truncated Taylor series method [26, Eq. 1.2.4]), depends on the2336

integration step size, and on the size of the flying mesh in the DIPOLE method [26,2337

Fig. 20]; check a possible departure of the betatron damping from theory as a function2338

of these parameters.2339

Produce a graph of the horizontal and vertical wave number values over the2340

acceleration cycle.2341

(f) Some spin motion, now. Adding SPNTRK at the beginning of the sequence2342

used in (e) will ensure spin tracking.2343

Based on the input data file worked out for question (d), simulate the acceleration2344

of a single particle, through the intrinsic resonance GγR = 4− νy , from a distance of2345

a few times the resonance strength upstream (this requires determining BORO value2346

under OBJET) to a distance of a few times the resonance strength downstream of the2347

resonance, at an acceleration rate of 10 kV/turn.2348

OBJET[KOBJ=8] can be used to allow to easily define an initial invariant value.2349

Start with spin vertical. On a common graph, plot Sy(turn) for a few different2350

values of the vertical betatron invariant (the horizontal invariant value does not2351

matter - explain that statement, it can be taken zero). Derive the resonance strength2352

from these tracking, check against theory.2353

Repeat, for different crossing speeds.2354

Push the tracking beyond Gγ = 2×4+νy: verify that the sole systematic resonances2355

Gγ = integer × P ± νy are excited - with P = 4 the periodicity of the ring.2356

Break the 4-periodicity of the lattice by perturbing the index in one of the 42357

dipoles (say, by 10%), verify that all resonances Gγ = integer± νy are now excited.2358

(g) Consider a case of weak resonance crossing, single particle (i.e., a case where2359

Pf /Pi ≈ 1, taken from (f); crossing speed may be increased, or particle invariant2360
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decreased if needed), show that it satisfies Eq. 9.41. Match its turn-by-turn tracking2361

data to Eq. 9.41 so to get the vertical betatron tune νy , the location of the resonance2362

GγR, and its strength.2363

(h) Stationary spin motion (i.e. at fixed energy) is considered in this question.2364

Track a few particles with distances from the resonance∆ = Gγ−GγR = Gγ−(4−νy)2365

evenly spanning the interval ∆ ∈ [0, 7 × ǫR].2366

Produce on a common graph the spin motion Sy(turn) for these particles, as2367

observed at some azimuth along the ring.2368

Produce a graph of
〈
Sy
〉
|turn(∆) (as in Fig. 9.19). Produce the vertical betatron

tune νy , the location of the resonance GγR, and its strength, obtained from a match
of

〈
Sy
〉
|turn(∆) to (Eq. 9.37)

〈
Sy
〉
(∆) = ∆

√
|ǫR |2 + ∆2

(i) Track a 200-particle 6-D bunch, with Gaussian transverse densities of εx,y a2369

few µm, and Gaussian δp/p with σδp/p = 10−4. Produce a graph of the average2370

value of Sy over a 200 particle set, as a function of Gγ, across the GγR = 4 − νy2371

resonance. Indicate on that graph the location of the resonant GγR values.2372

Perform this resonance crossing for five different values of the particle invariant:2373

εy/π = 2, 10, 20, 40, 200 µm. Compute Pf /Pi in each case, check the dependence2374

on εy against theory.2375

Compute the resonance strength, εy , from these tracking.2376

Re-do this crossing simulation for a different crossing speed (take for instance2377

V̂ = 10 kV) and a couple of vertical invariant values, compute Pf /Pi so obtained.2378

Check the crossing speed dependence of Pf /Pi against theory.2379

9.2 Construct the ZGS (zero-gradient) synchrotron. Spin Resonances2380

Solution: page 337.2381

In this exercise, the ZGS 12 GeV synchrotron is modeled. Spin resonances in a2382

zero-gradient, wedge focusing synchrotron are studied.2383

A photo taken in the ZGS tunnel is given in Fig. 9.4; a schematic layout of the ring2384

is shown in Fig. 9.23, and a sketch of the double dipole cell in Fig. 9.24. Table 9.22385

details the parameters of the synchrotron resorted to in these simulations.2386

(a) Construct a model of ZGS 45o cell dipole in the hard-edge model, using2387

DIPOLE. Use the parameters given in Tab. 9.2, and Figs. 9.23, 9.24 as a guidance.2388

For beam monitoring purposes, split the dipole in two 22.5odeg halves. Take the2389

closed orbit radius as the reference RM=2076 cm in DIPOLE: it will be assumed2390

that the orbit is the same at all energies4. Take an integration step size in centimeter2391

range - small enough to ensure numerical convergence, as large as doable for fast2392

multiturn raytracing.2393

Validate the model by producing the 6 × 6 transport matrices of both dipole2394

(MATRIX[IFOC=0] can be used for that, with OBJET[KOBJ=5] to define a proper2395

set of paraxial initial coordinates) and checking against theory (Sect. 15.2, Eq. 15.6).2396

4 Note that in reality the reference orbit in ZGS moved outward during acceleration [27].
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Fig. 9.23 A schematic layout of the ZGS [23], a π/2-periodic structure, comprised of 8 zero-index
dipoles, 4 long and 4 short straight sections

Add fringe fields in DIPOLE[λ,C0 − C5], the rest if the exercise will use that2397

model. Take fringe field extent and coefficient values2398

λ = 60 cm C0 = 0.1455, C1 = 2.2670, C2 = −0.6395, C3 = 1.1558, C4 = C5 = 0
(9.43)

(C0 − C5 determine the shape of the field fall-off, they have been computed from a2399

typical measured field profile B(s)).2400

(b) Construct a model of ZGS cell accounting for dipole fringe fields, with origin2401

at the center of the long drift. In doing so, use DIPOLE[KPOS] to cancel the closed2402

orbit coordinates at DIPOLE ends.2403

Compute the periodic optical functions at cell ends, and cell tunes, using MA-2404

TRIX[IFOC=11]; check their values against theory.2405

Move the origin at the location (azimuth s along the cell) of the betatron functions2406

extrema: verify that, while the transport matrix depends on the origin, its trace does2407

not. Verify that the local betatron function extrema, and the dispersion function, have2408

the expected values.2409

Produce a graph of the optical functions (betatron functions and dispersion) along2410

the cell.2411

(c) Additional verifications regarding the model.2412

Produce a graph of the field B(s)2413
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Fig. 9.24 A sketch of ZGS
cell layout. In defining the
entrance and exit faces (EFBs)
of the magnet, beam goes from
left to right. Wedge angles at
the long straight sections
(ε1) and at the short straight
sections (ε2) are different

ε > 0

   

   

2ε > 0
     

1

ε > 02

ε > 0
1

α α

ρρ

Table 9.2 Parameters of the ZGS weak focusing synchrotron after Refs. [27, 28] [23, pp. 288-
294,p. 716] (2nd column, when they are known) and in the present simplified model and numerical
simulations (3rd column). Note that the actual orbit moves during ZGS acceleration cycle, tunes
change as well - this is not taken into account in the present modeling, for simplicity

From Simplified
Refs. [27, 28] model

Injection energy MeV 50
Top energy GeV 12.5
Gγ span 1.888387 - 25.67781
Length of central orbit m 171.8 170.90457
Length of straight sections, total m 41.45 40.44
Lattice

Wave numbers νx ; νy 0.82; 0.79 0.849; 0.771

Max. βx ; βy m 32.5; 37.1

Magnet

Length m 16.3 16.30486
(magnetic)

Magnetic radius m 21.716 20.76
Field min.; max. kG 0.482; 21.5 0.4986; 21.54
Field index 0
Yoke angular extent deg 43.02590 45
Wedge angle deg ≈10 13 and 8

RF

Rev. frequency MHz 0.55 - 1.75 0.551 - 1.751

RF harmonic h=ωrf/ωrev 8
Peak voltage kV 20 200
B-dot, nominal/max. T/s 2.15/2.6
Energy gain, nominal/max. keV/turn 8.3/10 100
Synchronous phase, nominal deg 150
Beam

εx ; εy (at injection) πµm 25; 150
Momentum spread, rms 3 × 10−4

Polarization at injection % >75 100

Radial width of beam (90%), at inj. inch 2.5
√
βxεx/π = 1.1
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- along the on-momentum closed orbit, and along off-momentum chromatic closed2414

orbits, across a cell;2415

- along orbits at large horizontal excursion;2416

- along orbits at large vertical excursion.2417

For all these cases, verify qualitatively, from the graphs, that B(s) appears as2418

expected.2419

(d) Justify considering the betatron oscillation as sinusoidal, namely,

y(θ) = A cos(νyθ + φ)

wherein θ = s/R, R =
∮

ds/2π.2420

(e) Produce an acceleration cycle from 50 MeV to 17 GeV about, for a few particles2421

launched on a common 10−5 πm vertical initial invariant, with small horizontal2422

invariant. Ignore synchrotron motion (CAVITE[IOPT=3] can be used in that case).2423

Take a peak voltage V̂ = 200 kV (this is unrealistic but yields 10 times faster2424

computing than the actual V̂ = 20 kV, Tab. 9.2) and synchronous phase φs = 150 deg2425

(justify φs > π/2). Add spin, using SPNTRK, in view of the next question, (f).2426

Check the accuracy of the betatron damping over the acceleration range, compared2427

to theory. How close to symplectic the numerical integration is (it is by definition2428

not symplectic), depends on the integration step size, and on the size of the flying2429

mesh in the DIPOLE method [26, Fig. 20]; check a possible departure of the betatron2430

damping from theory as a function of these parameters.2431

Produce a graph of the evolution of the horizontal and vertical wave numbers2432

during the acceleration cycle.2433

(f) Using the raytracing material developed in (e): produce a graph of the vertical2434

spin component of a few particles, and the average value over the 200 particle bunch,2435

as a function of Gγ. Indicate on that graph the location of the resonant GγR values.2436
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(g) Based on the simulation file used in (f), simulate the acceleration of a sin-2437

gle particle, through one particular intrinsic resonance, from a few thousand turns2438

upstream to a few thousand turns downstream.2439

Perform this resonance crossing for different values of the particle invariant.2440

Determine the dependence of final/initial vertical spin component value, on the2441

invariant value; check against theory.2442

Re-do this crossing simulation for a different crossing speed. Check the crossing2443

speed dependence of final/initial vertical spin component so obtained, against theory.2444

(h) Introduce a vertical orbit defect in the ZGS ring.2445

Find the closed orbit.2446

Accelerate a particle launched on that closed orbit, from 50 MeV to 17 GeV about,2447

produce a graph of the vertical spin component.2448

Select one particular resonance, reproduce the two methods of (g) to check the2449

location of the resonance at GγR =integer, and to find its strength.2450
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