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Chapter 1

Weak focusing synchrotron

1.1 Introduction

The discovery of the phase stability method in the resonant acceleration goes back

to 1944-1945 [1.a,1.b] It led to “synchronous acceleration” and to a new concept of

ring (a betatron ring orbit style) accelerator: the synchrotron. In the synchrotron

the rise in the magnetic field that maintains the particle on a constant-radius orbit,

and the modulation of the frequency of the oscillating voltage which accelerates it

(RF voltage, for short, in the foregoing), are in synchronism with the evolution of

the revolution time,

fRF(t) = hfrev(t), B(t) = p(t)/qρ, ρ = constant (1.1)

These are two major evolutions compared to the cyclotron, where, instead, the

magnetic field and the RF voltage frequency are fixed.

The varying field and constant orbit concept naturally led to demonstrating

phase stability using an existing betatron. This happened in 1946 with the first

synchrotron, a 8 MeV proof-of-principle which used an X-ray betatron (a former

tool for the radiography of unexploded bombs in London streets) at the Woolwich

Arsenal Research Laboratory in UK [1.c].

• Exercise 1.1-1.

1.1-1.a - Build a zgoubi data file for the tracking of a single 3.6 MeV proton (use

OBJET, option KOBJ=2), across a 90 degree sector dipole (DIPOLE can be used). The

hypotheses are the following: a zero index magnet for the time being, bending

radius of the reference trajectory ρ0 = 8.42 m. Check your data by tracking a par-

ticle on the reference orbit arc at ρ0 (local particle coordinates can be “seen” using

FAISCEAU, or stored using FAISTORE. Stepwise particle coordinates, field, etc., can

be stored for plotting, using IL=2 under DIPOLE).

1.1-1.b - Based on that dipole magnet, build in zgoubi a circular accelerator with

the following geometry: four 90 degree dipoles, 4 meter distant from one another

(use DRIFT for field-free straight sections). Check your data by tracking a particle:

make sure you find its closed orbit.

1.1-1.c - Assume 3.6 MeV proton injection in that ring, and 2.94 GeV top energy.

Perform a scan of the value of the magnetic field B, from injection field B̌ to top

energy field B̂. Plot B and Trev from that scan, as a function of kinetic energy,

1
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together with theory.

1.1-1.d - Plot the resulting frev as well as Bρ, as a function of kinetic energy, to-

gether with theory. We will need these outcomes for synchronous acceleration in

SATURNE 1. •

The synchronism between RF voltage frequency and revolution time (Eq. 1.1)

allows maintaining the bunch at an appropriate phase (the “synchronous phase”)

with respect to the oscillating voltage when passing the accelerating gap, see Fig. 1.7

(p. 16). This allows as well maintaining the bunch longitudinally confined (by

the mechanism of “phase focusing”) about that equilibrium phase (away from the

voltage crest as will be seen, by contrast with the isochronous cyclotron method).

Synchronous acceleration is simpler in the case of electrons, as frequency modu-

lation is no longer necessary as long as the initial energy is a few MeV (v/c = 0.9987

at 10 MeV, fRF(t) = hfrev(t) ≈ constant) (this allowed a straightforward proof-of-

principle of phase stability, using an existing X-ray betatron).

A difference with the cyclotron and synchro-cyclotron families is that the accel-

erated bunch is constrained to follow a fixed orbit (the “closed orbit”). This results

from the bunch momentum increasing in synchronism with B(t), as it does in the

betatron, so leading to the above p(t) = qB(t)ρ, ρ=constant, at all t.

This technique dramatically reduces the size of the guiding magnets, only leaving

a circular accelerator with an annular, or “ring”, structure (Figs. 1.1, 1.2). By

contrast, a [synchro-]cyclotron magnet is a pair of full, massive cylindrical poles;

greater energy requires greater radial extent of the magnet to allow the necessary

increase of the bend field integral (namely,
∮

B dl = 2πRmaxB̂ = pmax/q whereas

B̂ is pushed to an extreme ∼ 2 T) and accordingly of the diameter of the bulky

cylinder, thus the volume of iron increases more than quadratically with bunch

rigidity.

Another corollary of the pulsed field in the synchrotron is that the acceleration

is cycled (as it is the case in a synchrocyclotron in general 1.

The field ramping law B(t) depends on the type of power supply. If the ramping

uses a constant electromotive force, then

B(t) ∝ (1− e−
t
τ ) = 1−

[
1−

(
t

τ

)
+

(
t

τ

)2

− ...

]
≈ t

τ

essentially linear. In that case Ḃ = dB/dt does not exceed a few Tesla/second, thus

the repetition rate of the acceleration cycle if of the order of an Hertz. If the magnet

winding is part of a resonant circuit the field law has the form

B(t) = B0 +
B̂

2
(1− cosωt)

In the interval of half a period, namely t : 0 → π/ω, then B(t) : B0 → B0 + B̂

increases from an injection threshold value to a maximum value at highest rigidity,

correspnding to highest achievable energy Ê = pc/β = qB̂ρc/β. The repetition rate
1Yet not always: the RF frequency is fixed if the accelerated particle is ultra-relativistic as in

the linear FFAG EMMA [2], or if the optics is designed quasi-isochronous as allowed in a scaling
FFAG lattice [3]
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Fig. 1.1

SATURNE 1 at Saclay, France [Archives his-
toriques CEA. Copyright CEA/Service de

documentation - FAR SA N xxxx], a 3 GeV,

4-periodic, 68.9 m closed orbit, weak focus-
ing synchrotron (n ≈ 0.6), started operation

in 1957 - plans for polarized proton beams

in SATURNE 1 triggered the Froissart-Stora
theory of depolarization [6,7]. Each magnet

weighs 1150 tons. The four straight sections
are 4 m long; injection is in the north one,

from a 3.6 MeV Van de Graaff (not visible);

the south section houses the extraction sys-
tem; the RF cavity is in the west one; a beam

detection system is located in the east one.

The peak power requested from the acceler-
ation RF system does not exceed 2 kW (a

“Ham Radio” style of amplifier).

Fig. 1.2 The ZGS at Argonne, IL,

USA, during construction, a 12 GeV syn-
chrotron zero-gradient synchrotron, which

used wedge focusing (field index zero). ZGS

was operated over 1964-1979. First polar-
ized beam acceleration happened at ZGS, in

July 1973, to 8.5 GeV/c, up to 12 GeV/c in

the following years [7,8]. Pulsed quadrupoles
were used to pass through several depolar-

izing resonances with no significant depo-
larization, a method known as resonance

crossing by fast “tune-jump”. Injector: pro-

tons from a 20 keV polarized source are pre-
accelerated by a 750 keV Cockcroft-Walton,

followed by a 50 MeV linac.

with resonant magnet cycling can reach a few tens of Hertz. In both cases anyway

B imposes its law and the other quantities characteristic in the acceleration cycle

(RF frequency for instance) will follow B(t).

By contrast in a synchrocyclotron, the field is not ramped, acceleration can be

as fast as the voltage system allows; an order of magnitude: take 10 kVolts per

turn, meaning about 10,000 turns to 100 MeV, at a velocity v ≈ 0.5c to make it

simple (actually 0.046 < v/c < 0.43 from 1 to 100 MeV), an orbit circumference of

C = 30 meter, thus the acceleration takes T = 104 × C/0.5c ≈ 2 ms, potentially a

repetition rate of 500 Hz, more than two orders of magnitude greater than a pulsed

synchrotron allows.

• Exercise 1.1-2. An hint of carbon-ion cancer-treatment synchrotron: rapid-cycling

C6+
12 acceleration. Assume maximum field B̂ = 1.2 T in the 90 degree magnet of

Ex. 1.1-1 (1.2 T is low enough to consider that the field varies linearly, B(t) ∝current

in the coils, over the interval [0, B̂] - magnetic saturation of iron commences in this

region). Assume 7 MeV injection energy.

2.a - Calculate the injection field B0 and the maximum carbon ion energy Ê.

2.b - Is that B̂ value high enough, or too small, for Bragg peak penetration depth

of 30 cm in human body? What value should it be? Assuming that latter value for

B̂, at what instant in the magnet cycle would the extraction of a carbon ion bunch
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have to happen for 1 cm Bragg peak penetration?

2.c - Simulate a complete 30 Hz acceleration cycle in that ring, up to

400 MeV/nucleon: accelerate a few tens of carbon ions from start to end (assume

constant acceleration acceleration at one RF gap) (use SCALING, option NT=-1, to

ramp the field in the dipoles and CAVITE, option IOPT=3 to accelerate). Plot the

horizontal and vertical phase spaces of the carbon bunch. Plot the magnetic field

cycle B(t) (PRINT option under SCALING can be used to store scaling data), indicate

(label) the injection and extraction fields and times on the graph. •

The invention of the synchrotron was a vast breakthrough. The next decades

saw its application in many domains of science, medicine, industry. The weak focus-

ing synchrotron allowed colliding particle beams of highest energies on fixed targets

in nucleus fission and particle production experiments, leading to the discovery of

several fundamental particles. It remains an appropriate technology today for low

energy beams, as in the protontherapy cancerology application, where its techno-

logical simplicity makes it attractive (it essentially requires a single type of simple

dipole magnet, and an accelerating gap, that’s it!).

Transverse beam focusing in the large, high energy, weak focusing ion syn-

chrotron rings has inherited from the proven cyclotron and betatron method, namely

a transverse field index 0 < n = −R
B
∂B
∂R < 1 (that was the case in the first example

worked on below, the 3 GeV SATURNE 1 synchrotron [4] started in 1957 at Saclay),

combined or not with Thomas focusing (”wedge focusing”, which was the case in

the second example below, the 12 GeV Zero Gradient Synchrotron “ZGS” (n=0)

operated at Argonne in 1964-79 [5]).

In this chapter we retain the two examples of SATURNE 1 at Saclay, for exer-

cises, and the ZGS at Argonne, as a “project”, for two main reasons:

- it allows playing with two very different weak focusing methods,

- they saw the first developments on spin polarized proton beams, and their

acceleration at the ZGS in 1973, this is an opportunity to start exploring spin

motion in particle accelerators.

1.2 Transverse motion

We will introduce the matter using as an example the “SATURNE 1” synchrotron

(Fig. 1.1), built at Saclay (CEA, France) in 1956-58, operated in 1958-1973. The

magnetic structure is 2π
N -symmetric (or “N-periodic”), featuring N identical 2π

N de-

gree sector dipoles, between which field-free spacings (“drift space”, or “straight

section”) are introduced. By so “dislocating” a one-piece 360 degree dipole magnet

into N identical pieces, the optical structure is changed from one magnetic period

per turn, to N periods per turn: the period repeats itself, identically, N times over

the ring circumference.

Introducing straight sections in the magnetic structure of the ring allows room

for inserting the various systems that garnish the synchrotron: radio-frequency

cavity and its voltage gap, injection, extraction, diagnostics systems, special op-

tical elements. This was a similar advantage in the “separated sector” cyclotron,
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compared to the single-dipole “classical” cyclotron, an outcome of Thomas focusing

technique, there.

Motion stability in an axially symmetric dipole field is simply a matter of eval-

uating the resultant of the forces that apply on the particle, and whether they pull

it, both horizontally and vertically, toward the equilibrium position, this has been

examined earlier (“Cyclotron” Chapter). It is not as simple in the presence of drifts:

this lead to introducing two radii (Fig. 1.3):

(i) the magnet curvature radius ρ0 = 8.42 m

(ii) a “physical” radius R = 68.90/2π = 10.97 m, such that

2πR=circumference=2πρ0 + NL, with L the the length of a drift space.

It also leads to defining a virtual reference line: the theoretical trajectory that a

particle of momentum p = qBρ0 would follow, comprised of arcs of radius ρ0 in the

B-field magnets, and straight lines that connect these arcs.

L

ρ

p

y

ρο

o

p −   p∆o

P
s

x

Fig. 1.3 2π/N revolution-symmetric struc-

ture with drift spaces, and the moving

Serret-Frenet frame (s, x, y) attached to the
particle at P. The graph shows the reference

closed trajectory at momentum p0 with ra-

dius ρ0 in the bends, and a chromatic orbit
for p = p0 − ∆p < p0, distant ∆x(s) =
ρ0

1−n
∆p
p0

.

Parameters of SATURNE 1 weak focusing

synchrotron.

• Exercise 1.2-1 We will construct SATURNE 1 ring, to end up, in the foregoing, sim-

ulating a complete acceleration cycle. First, fill up a spreadsheet with SATURNE 1

parameters as available from the Table on page 5 . Be prepared to complete that

spreadsheet with additional parameters as we progress with the simulations. •

• Exercise 1.2-2
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Start from Exercise 1.1-1 to complete SATURNE 1, using its parameter list: intro-

duce the field index (assume n = 0.6 at r = r0, nominal index at SATURNE 1); set

the reference closed orbit (the zero of the reference particle transverse coordinates)

on the nominal magnetic radius r0 = 8.42 m; check the general parameters out of

the simulation against the data table: circumference, time of flight.

Scan the chromatic orbits over the range ∆p = ±10−3p0, step 10−4, plot

∆x/(∆p/p0) as a function of ∆p, deduce the corresponding value for the field

index. •

1.2.1 Equations of motion in a dipole magnet

The differential equations in the moving frame (the Serret-Frenet frame, tangent

to the reference orbit, Fig. 1.3) for small motion around the trajectory at constant

radius ρ0 are derived from the Lorentz equation,

dmṽ

dt
= qṽ × B̃→ m

d

dt


ds
dt~s
dx
dt ~x
dy
dt ~y

 = q


(dxdtBy −

dy
dtBx)~s

−dsdtBy~x
ds
dtBx~y

 (1.2)

A “hard-edge” model of a dipole is assumed here: Bs = 0, the field falls abruptly to

zero at magnet ends. Introduce the field index n = − ρ0
B0

∂By

∂x evaluated at (ρ0 + x,

y = 0) (so, in passing, B0 is a short notation for By(ρ0, y = 0)) and assume radial

and axial stability, 0 < n < 1. Taylor expansion of the field in the coordinates write

By(ρ) = By(ρ0) + x
∂By

∂x |ρ0 +O(x2) ≈ By(ρ0)− n
By

ρ0
|ρ0x = B0(1− n x

ρ0
)

Bx(0 + y) = Bx(0)︸ ︷︷ ︸
=0

+y
∂Bx

∂y︸︷︷︸
=
∂By
∂x

(+higher order in y) ≈ −nB0

ρ0
y (1.3)

Introduce in addition ds ≈ vdt and the deviations with respect to the reference

(closed) orbit. In these hypotheses, the differential equations of motion write

d2x

ds2
+

1− n

ρ2
0

x = 0,
d2y

ds2
+

n

ρ2
0

y = 0 (0<n=− ρ0

B0

∂By

∂x
<1) (1.4)

1.2.2 Betatron motion, periodic stability

The focusing forces take different forms, depending on the type of optical element

traversed, namely with index n

{
= 0 in drift spaces
∈]0, 1[ in dipole sector . However, the equation of

motion, Hill’s equation, presents the general form

{
d2z
ds2 + Kz(s)z = 0

Kz(s + S) = Kz(s)
with


in a dipole :

{
Kx = 1−n

ρ20

Ky = n
ρ20

drift space (ρ→∞) : Kx = Ky = 0

ε-angle wedge : K
x
y

= ± tan ε
ρ0

(1.5)

Kz(s) is S-periodic - the length S of a cell is a quarter of the circumference, in

SATURNE 1.
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Floquet’s theorem states that Hill’s equation has two solutions of the form{
z1(s) = eiµ s

S p1(s)

z2(s) = eiµ s
S p2(s)

(1.6)

with p1(s) and p1(s) two S-periodic functions: p1,2(s+S) = p1,2(s) and µ satistfying

cosµ =
1

2
Trace [T(s + S← s)]

with T(s+S← s) the transfer matrix relative to the period. The solutions in Eq. 1.6

are bounded iff µ is real, i.e., if −1 < 1
2Trace(T) < 1. If 1

2Trace(T) = 1, d2y
ds2 has

one solution S-periodic (stable) and one solution linear in s; if 1
2Trace(T) = 1, d2y

ds2

has one solution 2S-periodic (stable) and one solution linear in s; in both cases the

resultant is unstable.

µ is the phase advance of the betatron motion over a period, a quantity indepen-

dent of the origin of the period. The number of betatron oscillations over a period

(the cell wave number, or “tune”) is

ν = µ/2π (1.7)

The phase advance over an N-period ring is Nµ (N = 4 for SATURNE 1), the wave

number per turn (the “ring tune”) is Nµ/2π.

Obviously, periodic stability requires

− 1 <
1

2
Trace(T) < 1 (1.8)

Stability of the periodic motion

• Exercise 1.2.2-1.

1.a - Compute the transport matrix

TA = T(SA + S← SA) =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 (1.9)

of SATURNE period (take n = 0.6). Verify that its determinant value is 1.

1.b - Verify that the traces of the 2×2 matrices are independent of the origin of the

cell: take the origin at either center of drift, entrance of dipole or center of dipole,

compute the different matrices.

1.c - Show, for two of the different origins in (ii), say, sA and sB, that the matrices

satisfy TB = U×TA ×U−1, with U the transfer matrix from sA to sB, compute U

for 3 different origins: center of drift, entrance or center of dipole). •

• Exercise 1.2.2-2. Motion stability (1/3):

The stability (or instability) of particle motion around the ring can be observed by

recording the amplitudes x(n), x′(n) and y(n), y′(n) at a fixed azimuth s in the

ring, at successive turns for a large number of turns, n.

Accelerator physicists have a predilection for phase space, let’s go there: for a
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particle with small initial horizontal and vertical coordinates, observed at the center

of a drift over tens of turns, plot both horizontal and vertical particle motions in

their respective phase spaces, (x, x′) and (y, y′). Do it at center of drift and entrance

of dipole. What do you observe? •

In the stable case the Twiss matrix notation can be introduced,

T(s + S← s) =

[
cosµ+ α(s) sinµ β(s) sinµ

−γ(s) sinµ cosµ− α(s) sinµ

]
= I cosµ+ J(s) sinµ (1.10)

with I =identity matrix and J2 = −I. This introduces the following quantities:

- the betatron function β(s), which relates to the amplitude of the betatron

oscillations,

- and its derivative α(s) = − 1
2

dβ(s)
ds .

α(s) and β(s) are S-periodic, a periodicity imposed by T(s + kS + S ← s + kS) =

T(s + S← s), k an arbitrary integer.

• Exercise 1.2.2-3. Theoretical properties of the Twiss matrix:

3.a - write explicitly the matrix J(s), calculate J2,

3.b - what is the value of the matrix T determinant? Deduce the relationship

between α(s), β(s) and γ(s),

3.c - show that the transfer matrix TN over an N-period sequence is obtained by

just updating the phase advance: µ→ Nµ. •

• Exercise 1.2.2-4. Motion stability (2/3):

4.a - it is a feature of any accelerator optics code to provide the optical functions

α(s), β(s) and the phase advance µ. Get these from the computation of SAT-

URNE 1 optical properties.

4.b - back to the observed horizontal and vertical motions of Exercise 1.2.2-2: check

that the horizontal motion coordinates recorded after n turns in the N = 4 cell

SATURNE 1 ring satisfy

(
x

x′

)
= T(nNµ) ×

(
x0

x′0

)
with x0, x′0 the starting coor-

dinates, T(nNµ) the Twiss matrix (Eq. 1.10) taken for µ→ nNµ

4.c - repeat for y, y′, vertical motion,

4.d - plot a few tens of turns in the normalized phase space ( x√
β
, αx+βx′
√
β

). What

is the shape of the trajectory in that phase space? What is the property of the

quantity x2

β ,
(αx+βx′)2

β )?

Check that the progression of the betatron phase from one turn to the next is Nµ. •

• Exercise 1.2.2-5. Motion stability (3/3):

5.a - track a particle of initial coordinates (xo, x
′
0)) for a few hundred turns around

the ring. Record it coordinates a some azimuth, for instance the middle of a drift.

Plot these in the transverse horizontal phase space (x, x′).

5.b - match this trajectory with an ellipse of equation

γxx2 + 2αxxx′ + βxx′2 = ε/π (1.11)

Compare the values for αx, βx, γx so obtained with those obtained from the Twiss

notation method. What is the relationship between these three quantities?
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5.c - repeat this coordinate recording and ellipse matching at the center of the

dipole, and at both ends of the drift. Conclusion?

5.d - represent the phase space ellipse of Eq. 1.11 in an (x,x’) frame: in terms

of αx, βx and γx, indicate the coordinates of the remarkable points of the ellipse:

maximum excursion xmax, maximum angle x′max, intersection with the axes: angle

at zero excursion x′(x = 0), excursion at zero angle x(x′ = 0). What does εx
represent? •

Stability diagram

The “working point” of the synchrotron is the couple (νx, νy) at which the acceler-

ator is operated, it fully characterizes the focusing (Fig. 1.4). In a structure with

revolution symmetry such as the classical cyclotron, we found

νx =
ωx

ωrev
=
√

1− n, νy =
ωx

ωrev
=
√

n thus ν2
x + ν2

y = 1 (1.12)

with ωx,y the radial and axial frequencies of the betatron motion around the ring.

Thus when the index is changed the working point stays on a circle of radius 1 in

the stability diagram (or “tune diagram”, Fig. 1.4). In a structure with revolution

symmetry and drift spaces, such as SATURNE 1, in a first approximation

νx =

√
(1− n)

R

ρ0
, νy =

√
n

R

ρ0
, thus ν2

x + ν2
y = R/ρ0 (1.13)

thus the working point is located on the circle of radius
√

R/ρ0 > 1, for all n In

the SATURNE 1 synchrotrom n was changing during acceleration, R/ρ0 = 1.3 and

a nominal n = 0.6 would yield νx = 0.72, νx0.88 nominal tune values.

Horizontal and vertical focusing are not independent: if νx increases then νy

decreases and reciprocally; none can excede the limits

0 < ν <
√
R/ρ0

This is a lack of flexibility which strong focusing will overcome by providing two

knobs so allowing adjustment of both tunes separately instead (Chapter Syn-

chrotron, Strong Focusing).

• Exercise 1.2.2-6. Here we vary the betatron frequency of paraxial particle motion,

by taking different values for n.

6.a - On a common graph superimpose the betatron wave number νx(n), same for

νy(n), obtained in three different ways:

- Fourier analysis of the recorded motion in Exercise 1.2.2-2

- using cosµ = 1
2Trace(T), with T computed from 1-turn mapping (Eq. 1.8 ).

- the relationships νx(n), νy(n) of Eq. 1.13.

6.b - Plot these data in a tune diagram. •
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Fig. 1.4 The working point in the tune diagram is located (A): case of revolution symmetry, on

a circle of radius 1; (B): case of revolution symmetry + drift spaces, on a circle of radius (
√
R/ρ0);

(C): case of strong focusing, (|n| � 1), in large νx, νy regions.

1.2.3 Off-momentum motion

The transverse motion of a particle with momentum p = p0 + ∆p satisfies

d2x

ds2
+ Kxx =

1

ρ0

∆p

p0
,

d2y

ds2
+ Kyy = 0 (1.14)

with Kx, Ky depending on the nature of the optical element:

� dipole :

{
Kx = 1−n

ρ20
(n = − ρ0

B0

∂By

∂x )

Ky = n
ρ20

� dipole wedge angle :


K

x
y

= ± tan ε
ρ0

δ(s− s0) (ε<> 0 for a focusing
defocusing wedge)

1
ρ0

= 0

� drift space : Kx = Ky = 0 and 1
ρ0

= 0

(1.15)

Just as there exists a closed orbit for the on-momentum particle (∆p = 0), it results

from these considerations that there exists a closed orbit for an off-momentum

particle, a “chromatic closed orbit”, which closes on itself over a turn and has the

periodicity of the ring.

The solution of Eq. 1.14 for any optical element (dipole, wedge, drift) writes

under the general form
x2

x′2
y2

y′2
δ

 =


Cx Sx 0 0 Dx

C′x S′x 0 0 D′x
0 0 Cy Sy 0

0 0 C′y S′y 0

0 0 0 0 1




x1

x′1
y1

y′1
δ

 (1.16)

wherein (∗)′ = d(∗)/ds, δ = (p − p0)/p0, the index 1 (resp. 2) designates the

particle coordinates at entrance (resp. exit) of the optical section. In virtue of

Eq. 1.15 only the dipole has non-zero chromatic coefficients Dx and D′x: the other

elements (drift, wedge) have the right hand side term of Eq. 1.14 zero, thus their

Dx and D′x coefficients are zero.
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• Exercise 1.2.3-1. Compute the 5×5 matrices of the cell drift and of the cell dipole

(n=0.6) in SATURNE 1, from ray-tracing. Verify that

(i) they have the expected form given in Eq. 1.16 ;

(ii) their coefficient values satisfy, respectively,

drift :

{
Cx = 1; Sx = s− s0; Dx = 0

Cy = 1; Sy = s− s0

dipole :{
Cx = cos

√
Kx(s− s0); Sx = 1√

Kx
sin
√

KxL; Dx = 1
ρ0Kx

(1− cos
√

Kx(s− s0))

Cy = cos
√

Ky(s− s0); Sy = 1√
Ky

sin
√

Ky(s− s0)
•

• Exercise 1.2.3-2. An illustration that not only the individual optical element

matrices (drift, dipole, etc., previous exercise), but as well the global matrix of a

sequence of optical elements has the very form given in Eq. 1.16 :

Calculate the analytical expression of the product Tdipole×Tdrift of the drift-dipole

cell. Verify that

(i) it has the expected form given in Eq. 1.16 ;

(ii) it yields numerical values which are in accord with the numerical values

obtained from the ray-tracing. •

Periodic dispersion, chromatic closed orbit

The chromatic closed orbit satisfiesxch

x′ch
δ

 =

 C S D

C′ S′ D′

0 0 1

xch

x′ch
δ

 (1.17)

• Exercise 1.2.3-3. Solve the equation above for xch, x′ch. Calculate the numerical

values of xch/δ and xch/δ they yield in the case of SATURNE period (use the results

of exercise 1.2.3-2).

• Exercise 1.2.3-4. Ray-trace in SATURNE cell: verify numerically the value of

xch/δ and xch/δ by searching a chromatic closed orbit, say for δ = 10−3. Repeat

for the ring (4 cell sequence) - conclusion?

Momentum compaction - A chromatic closed orbit x(s) = D∆p
p has a different

length, L+δL, with L the length of the “on-momentum” closed orbit. The trajectory

lengthening, or “momentum compaction” compaction, is

α =
∆L/L
∆p/p

=
∆R/R

∆p/p
=

ρ0

(1− n)R
=

1

ν2
x

(1.18)

with the rightmost equality by virtue of Eq. 1.13.

• Exercise 1.2.3-5. Momentum compaction, dispersion function.

In the optical conditions of Ex. 1.2.3-4,

2.a - Check the trajectory lengthening of chromatic orbits, Eq. 1.18, plot it as a

function of ∆p/p, both numerical and theoretical.
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2.b - Compute the value of the on-momentum (∆p = 0) wave number νx using

MATRIX (Fourier analysis of multi-turn motion as in Ex. ??-3.b would do as well),

verify that α = 1/ν2
x (Eq. 1.18).

2.c - Plot the trajectory of a ∆p off-momentum particle, for a few turns around the

ring. Get D(s) using Eq. 1.17, check that D does not depend on s. •

A motion invariant - Introducing θ = s/ρ as the independent variable Eq. ??

becomes

d2z

dθ2
+ ν2z = 0,

{
radial motion : z = x and ν = νx =

√
(1− n)R/ρ0

vertical motion : z = y and ν = νy =
√

nR/ρ0
(1.19)

This is the differential equation of the harmonic oscillator, with solution

z = z0 cos νθ +
z′0
ν

sin νθ,
dz

dθ
= −νz0 sin νθ + z′0 cos νθ (1.20)

This can be written in the alternate form

z = ẑ cos(νθ + φ),
dz

dθ
= −νẑ sin(νθ + φ) (1.21)

where,

ẑ =

√
y2

0 +
y′20
ν2
, φ = −atan

y′0
νy0

(1.22)

The consequence is ẑ2 = y2
0 +

y′20
ν2 = y2 + y′2

ν2 : ẑ is an invariant of the motion.

1.3 Acceleration

In a synchrotron, the field B is varied (a function performed by the power supply)

as well as the bunch momentum p (a function performed by the accelerating cavity)

in such a way that at any time B(t)ρ = p(t)/q (ρ is the curvature radius of the

“central” or “reference” trajectory, or “machine axis”, in the bending magnets).

Given the energies involved and as a consequences the ensuing inertia, the magnet

supply imposes its law and the cavity follows B(t) law the best in can. A schematic

B(t) law is represented in Fig. 1.5.

• Exercise 1.3-1.

Carrying on with SATURNE ring, page 5, fill up your spreadsheet with the addi-

tional following data:

Ḃ T/s

max. B T

ρ m

max. Bρ T/s
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1.3.1 Energy gain, Ḃ, frequency law

The energy increase by the cavity follows the field variation in the guiding magnets,

Ḃ = dB/dt. The variation of the particle energy over a turn, under the effect of the

force on the charge at the cavity, writes

∆W = F× 2πR = 2πqρRḂ

Over most of the accelerating cycle in a synchrotron, Ḃ is usually constant, thus

∆W is also a constant. In general, kVolts are applied in smaller size synchrotrons,

and 100s of kVolts to MVolts are applied, possibly using several RF stations, in

large rings.

A’

slope t

B
(t

) 
 o

r 
 I

(t
)

injection
region

region
extraction

D D’A

C B’ C’B

Fig. 1.5 Cycling B(t) in a pulsed synchrotron. Ignoring saturation, B(t) is proportional to power
supply I(t). Bunch injection occurs at low field, in the region of A, extraction occurs at top energy,

on the high field plateau. (AB): field ramp up; (BC): flat top; (CD): ramp down; (DA’): thermal

relaxation. (AA’): repetition period; (1/AA’): repetition rate; slope: ramp velocity Ḃ = dB/dt
(Tesla/s).

• Exercise 1.3.2-1.

In SATURNE ring,

1.a - ramp the field in the dipoles to synchronize to a constant increase in energy

of the particle, see parameter table in page 5. Use a (artificially) extremely law

frequency cavity so to ensure same longitudinal boost at all passes (no synchrotron

motion for the moment).

1.b - plot Bρ [T.m] as a function of kinetic energy [MeV], from tracking and from

theory.

1.3.2 Adiabatic damping

As a result of the longitudinal acceleration at the cavity, the amplitude of betatron

oscillations decreases. The mechanism is sketched in Fig. 1.6. Coordinate transport

through the cavity writes

{
xout = xin

x′out ≈
px

ps
(1− dp

p ) = x′in(1− dp
p )

, hence the transfer

matrix of the cavity,

[C] =

[
1 0

0 1− dp
p

]
(1.23)
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trajectory
w/o cavity

with cavity
trajectory

p +  ps ∆

p +  pp

p ss

∆

p +  pp s
s

x
p

cavity

x

cavity

x

A

B

R dx A : cavity entrance
B : cavity exit

is reduced
amplitude

phase
advance

ν ds

Fig. 1.6 Adiabatic damping of betatron oscillations ( ∆p
p

> 0), here from x′in = px/ps before

the cavity, to x′out = px/(ps + ∆ps) after the cavity. In the horizontal phase space, to the right,

↓ ∆
(
dx
ds

)
if dx

ds
> 0, ↑ ∆

(
dx
ds

)
if dx

ds
< 0.

its determinant is 1 − dp/p, the system is non-conservative (the surface in phase

space is not conserved). Assume one cavity in the ring and [T].[C] the one-turn

matrix with origin at entrance of the cavity. Its determinant is det[T] × det[C] =

det[C] = 1− dp
p . For N turns the matrix is ([T][C])

N
, its determinant is (1− dp

p )N ≈
1−Ndp

p . The surface of the beam ellipse is ε×det[T]turn = ε0− εdp
p thus dε

ε = −dp
p ,

the solution of which is

ε× p = constant, or βγε = constant (1.24)

• Exercise 1.3.2-2 In SATURNE ring, launch a few tens of particles evenly dis-

tributed on an initial invariant βγε = 10−6πm. Track them for a few hundred of

turns as they are accelerated (use the same, artificial quasi-zero frequency cavity

for identical longitudinal boost to all particles at each traversal). Plot the evolution

of the surface of that ellipse with turn number, check against Eq. 1.24. Do it for

both planes, horizontal and vertical. •

1.4 Synchrotron motion

By “synchrotron motion”, or “phase oscillations”, it is meant a mechanism that

stabilizes the longitudinal motion of a particle around a synchronous phase, in

virtue of

(i) the presence of a cavity with its frequency indexed on the revolution time

(Sec. 1.4.1),

(ii) with the bunch centroid positioned either on the rising slope of the oscillating

voltage (low energy regime), or on the falling slope (high energy regime) (Sec. 1.4.2).

1.4.1 The synchronous particle

The synchronous (or “ideal”) particle follows the equilibrium trajectory around

the ring (the reference closed orbit, about which all other particles will undergo a

betatron oscillation) and its velocity satisfies

Bρ = p
q = mv

p → v = qBρ
m
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- the revolution time is Trev = 2πR
v = 2πR

βc = 2πR
qBρ/m

- the angular revolution frequency follows the increase of B:

ωrev = 2π
Trev

= qBρ
mR

- during the acceleration B(t) increases at a rate dB
dt = Ḃ, normally of the order of

a Tesla/second.

- in order for the ideal particle to stay on that very closed orbit during the ac-

celeration, its changing

momentum must at all time satisfy B(t)ρ = p(t)/q. This defines p(t) as a func-

tion of B(t). The following B dependence of mass and angular frequency results:

m(t) = γ(t)m0 = qρ
c

√(
m0

qcρ

)2

+ B(t)2, ωrev(t) = c
R

B(t)√
( m0

qcρ )
2
+B(t)2

- the RF voltage frequency ωRF(t) = hωrev(t) follows B(t), this maintains the

synchronous phase at a fixed value

- over a turn the gain in energy is ∆W = 2πqρRḂ, the reference particle experiences

a voltage V = ∆W/q = 2πρRḂ.

1.4.2 Phase stability

The voltage at the cavity at time t is

V = V̂ sin(

∫
ωRF(t) dt) = V̂ sinφ(t) (1.25)

ω and possibly V̂ are slowly varying with time. On an harmonic h of the revolution

frequency, φ explores the interval 2πh over a turn (Fig. 1.7).

The synchronous (aka “ideal”) particle presents itself at the cavity at the syn-

chronous phase φs, the same at every turn, and experiences an energy gain

∆W = qV̂ sinφs thus sinφs =
∆W

qV̂
=

2πρRḂ

V̂
(1.26)

It results that there is a minimum voltage to apply to the cavity, for the synchronous

particle to exist (| sinφs| < 1),

V̂ ≥ 2πρRḂ

The stability mechanism is illustrated in Fig. 1.7:

At high energy (think very high, v ≈ c) an excess ∆p > 0 only causes

small change in velocity, whereas the average orbit radius does increase (follow-

ing ∆R/R0 = α∆p/p0), thus a more energetic particle takes longer than the syn-

chronous particle to complete a turn, it arrives later at the cavity (at φ > φs), thus it

has to see a smaller voltage in order slow down and catch up with the synchronous

particle: the appropriate working point is at B. At low energy (think very low),

the relative excess in velocity for a particle having an excess ∆p, is greater than

the relative increase in orbit radius, the off-momentum particle takes less time to

perform a turn, it arrives at the cavity ahead of time (at φ < φs), thus it has to see

a lower voltage in order to catch up (increase its revolution time), thus the working

point has to be at A.
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Fig. 1.7 Mechanism of phase stability, “longitudinal focussing”. Below transition, γ < γtr, η > 0,
acceleration occurs for a stable synchronous phase ∈]0, π], at A, A’, A” in this illustration: a

particle with higher energy goes around the ring quicker than synchronous particle, it arrives

earlier (at φ < φs,A), it will experience a lower voltage than the synchronous particle and will
progress towards the latter, in energy and in phase. A particle with lower energy takes more time,

it arrives later, at φ > φs,A, it will experience a greater voltage than the synchronous particle.

Beyond transition, γ > γtr, η < 0, the stable phase ∈ [π, 2π[, at B, B’, B” here, with a similar
stabilizing mechanism: a particle which is less energetic than the synchronous particle arrives

earlier, φ < φs,B, and it sees a higher voltage, and inversely for a particle which is more energetic.

Quantifying that, by differentiation of ω = 2π/T (with T = L/v ⇒ −dT
T =

dv
v −

dL
L and dL

L = αdp
p ):

dω

ω
= −dT

T
= (

1

γ2
− α)

dp

p
= (

1

γ2
− 1

γ2
tr

)
dp

p
or

dω

ω
= η

dp

p

The change in phase focusing regime occurs at the “transition γ”

phase− slip factor η = 0, γtr = 1/
√
α

If the lattice transverse focusing optics has γtr somewhere in the acceleration

range, then the RF phase is quickly shifted at the time of the transition during the

acceleration, from A to B (Fig. 1.7), this is achieved without beam loss. This is the

case at BNL’s AGS, RHIC injector; at CERN’s PS, LHC injector chain.

For weak focusing machines (see the Cyclotron Chapter), one has α ≈ 1/ν2
x ,

thus γtr ≈ νx. Some synchrotrons present the property of an “imaginary γtr”, the

transition does not exist, this is the case when the lattice optics achieves α < 0.

• Exercise 1.4-1 What is the value of the transition γ in SATURNE 1? Verify by

tracking: check the longitudinal stability when accelerating a proton, either on the

rise slope (A), or the falling slope (B) of the RF. •

1.4.3 Synchrotron oscillations

There are h equilibrium positions φs over a revolution period. In the illustration of

Fig. 1.7 for instance, case h=3, acceleration occurs at

- at A, A’, A” if γ < γtr,

- at B, B’, B” if γ > γtr.

All particles located in the vicinity of these points will undergo a stable oscillatory
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Fig. 1.8 Accelerating bunch, above transition. Momentum acceptance [A.Hofmann, SR, p.269].

motion, a “phase oscillation”, centered on the respective φs. Thus h bunches can

circle around the ring, with an angular frequency which is that of the synchronous

particle, they are 2π/h distant in phase (and in azimuth around the ring).

Particles with small amplitude motion, ∆φ� π/2 undergo an harmonic motion

with frequency

Ωs =
c

R

√
hη cosφsqV̂RF

2πEs

{
Es = mγs = synchronous energy

R = circumference/2π
(1.27)

solution of
d2φ

dt2
+ Ω2

s ∆φ = 0 (∆φ = φ− φs) (1.28)

The number of synchrotron oscillations per turn, the “synchrotron tune” is

Qs =
Ωs

ωs
(1.29)

with ωs the revolution frequency of the synchronous particle (in a similar manner

to the transverse tunes, νx = ωx/ωs, Eq. 1.12).

Large amplitude motion satisfies the more general equation

d2φ

dt2
+

Ω2
s

cosφs
(sinφ− sinφs) = 0 (1.30)

The natural coordinate system for the longitudinal phase space comes out to be

(φ, φ̇), however the particle coordinate actually tracked is its momentum p, thus

the longitudinal phase space usually is (φ,∆p). Both are related by

∆p = − ps

hηωs
φ̇ (1.31)
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• Exercise 1.4.3-1. “Stationary bucket”.

In SATURNE ring, now install the RF system model (use a cavity model with self-

computed RF frequency, fRF in Eq. 1.26), complete your spreadsheet with the RF

motion parameters accordingly (phase-slip factor, RF frequency, voltage, Ωs, etc.).

1.a - Take φs = 0, track a particle with small amplitude motion, both transverse and

longitudinal (take for instance zero vertical invariant), over a few thousand turns.

1.b - Plot its motion in the longitudinal phase space (∆p, φ), superimpose the

theoretical solution of Eq. 1.28.

1.c - Determine the motion frequency Ωs, in two different ways:

(i) from the number of turns around the ring, over one phase oscillation

(ii) from Fourier analysis. •

• Exercise 1.4.3-2. “Accelerated bucket”.

Take SATURNE ring and RF system as of of Exercise 1.4.3-1.

2.a - Take instead φs = 30 degrees, track a particle with small amplitude motion,

both transverse and longitudinal, over a few thousand turns. Start for instance

from SATURNE injection energy.

2.b - Plot its motion in the longitudinal phase space (∆p, φ), superimpose the the-

oretical solution of Eq. 1.28.

2.c - Determine the motion frequency in longitudinal phase space, Ωs, in two differ-

ent ways:

(i) from the number of turns around the ring, over one phase oscillation

(ii) from Fourier analysis. •

• Exercise 1.4.3-3.

Take SATURNE ring as of Exercise 1.4.3-2.

3.a - Calculate the theoretical RF frequency law from injection to top energy, super-

impose with the very quantity out of the self-computation outcomes of the previous

RF computer model.

3.b - Replace the previous RF system (Ex. 1.4.3-1) with a computer model that al-

lows following that external law. Re-compute the quantities of Ex. 1.4.3-1, have the

results from the two methods (self-computed fRF and the present readout technique)

coincide. •

• Exercise 1.4.3-4. “Separatrix”.

Take SATURNE ring as of Exercise 1.4.3-2, synchronous RF phase set to φs = 30 de-

grees, ready for single-particle tracking.

4.a - Slowly push (by small iterations on initial ∆p values for instance) the longitudi-

nal motion amplitude to its maximum stable value: below, the motion is oscillatory,

beyond it is unbounded.

4.b - Once there, generate the separatrix of the RF motion: the limit between har-

monic motion, and unbounded motion. Plot particle trajectories in the longitudinal

phase space for a few different values of ∆p in the region of the stability limit. •
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1.4.4 RF bucket

• Exercise 1.4.4-1.

1.a - By tracking, show that the bucket height, “momentum acceptance”, satisfies

± ∆p

p
= ± 1

β

√
qV̂

πhηEs
[−(π − 2φs) sinφs + 2 cosφs] (1.32)

1.b - Show that the maximum extent in phase for small amplitude oscillations, from

the tracking, satisfies

±∆φmax =
hηEs

psRsΩs
×Max.

(
∆E

Es

)
(1.33)

1.c - Show that tracking and theory agree on the bucket length and height, taking

some φs values in [0, 2π]. •
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