Homework 5. Due September 23

Problem 1. 5 points. Following up HW4: your proved that simple combination of field multipoles can describe the edge of a magnet. You also learned that we can used Laplacian equation on effective field potential:

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \varphi=0
$$

Let expand the potential in transverse direction while keeping arbitrary dependence along the beam propagating axis $(\mathrm{s}=\mathrm{z})$

$$
\varphi=\sum_{n+m=k}^{\infty} a_{n m}(z) x^{n} y^{m}
$$

Derive the condition (connections) between functions $a_{n m}(z)$.
Problem 2. 8 points. Prove that

$$
\operatorname{det}[I+\varepsilon A]=1+\varepsilon \cdot \operatorname{Trace}[A]+O\left(\varepsilon^{2}\right)
$$

where I is unit $n x n$ matrix, A is an arbitrary $n x n$ matrix and ε is infinitesimally small real number. Term $O\left(\varepsilon^{2}\right)$ means that it contains second and higher orders of ε.
Hint: first, look on the diagonal elements $\prod_{m=1}^{n}\left(1+\varepsilon a_{m m}\right)$ first, then see what contribution to determinant comes from non-diagonal terms $a_{k m} ; k \neq m$.

