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Weak focusing approximation2120

In a cylindrically symmetric structure the sinusoidal motion is the exact solution of2121

the first order differential equations of motion (Eqs. 4.15, 4.16, Classical Cyclotron2122

Chapter), the coefficients Kx = (1 − n)/R2
0 and Ky = n/R2

0 are independent of s.2123

Adding drift spaces results in Hill’s differential equation with periodic coefficient2124

K(s + S) = K(s) (Eq. 9.11), with solution a pseudo harmonic motion (Eq. 9.15).2125

Due to the weak focusing the beam envelope is only weakly modulated (see below),2126

thus also is βu(s). In practice the modulation of βu(s) does not exceed a few percent,2127

justifying the introduction of the average value βu to approximate the phase advance2128

by2129 ∫ s

0

ds

βu(s)
≈ s

βu

= νu
s

R
(9.19)

The right equality is obtained by applying this approximation to the phase advance
per period, namely (Eq. 9.14)

µu =

∫ s0+S

s0

ds

βu(s)
≈ S

βu

and introducing the wave number of the N-period optical structure (Eq. 9.17) so that2130

βu =
R

νu
(9.20)

the wavelength of the betatron oscillation around the ring. With k ≪ 1 and using2131

Eq. 9.18,2132

βx =
ρ0(1 + k/2)
√

1 − n
, βy =

ρ0(1 + k/2)
√

n
(9.21)

Substituting νu
s
R

to
∫

ds
βu(s) in Eq. 9.15 yields the approximate solution2133




u(s) ≈
√
βu(s)εu/π cos

(
νu

s

R
+ φ

)

u′(s) ≈ −
√
εu/π
βu(s)

sin
(
νu

s

R
+ φ

)
+ αu(s) cos

(
νu

s

R
+ φ

) (9.22)

Beam envelopes2134

The beam envelope û(s) (with u standing for x or y) is determined by a particle on2135

the maximum invariant εu/π. It is given at all s by2136

û(s) = ±
√
βu(s)

εu

π
(9.23)
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Fig. 9.12 Multi-turn particle
excursion along the ZGS 2-
dipole 43 m cell. The motion
extrema (Eq. 9.23) tangent
the envelops, respectively
horizontal (red), and vertical
(blue). Envelops have the
symmetry of the cell 0 5 10 15 20 25 30 35 40
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As βu(s) is S-periodic, so also is the envelope, û(s + S) = û(s). In a cell with2137

symmetries, the beam envelopes feature the same symmetries, as shown in Fig. 9.122138

for the ZGS: a symmetry with respect to the center of the cell; envelope extrema2139

are at azimuth s of βu(s) extrema, i.e. where dû(s)/ds ∝ β′u(s) = 0 or αu = 0 as2140

β′u = −2αu.2141

Off-momentum orbits; periodic dispersion2142

In the linear approximation in ∆p/p0, a momentum offset ∆p = p− p0 changes mv to2143

mv(1+∆p/p0) in Eq. 9.8. This changes the horizontal equation of motion (Eq. 9.10)2144

to2145

d2x

ds2
+ Kx x =

1

ρ0

∆p

p0
, or

d2x

ds2
+ Kx

(
x − 1

ρ0Kx

∆p

p0

)
= 0 (9.24)

A change of variable x − 1
Kxρ0

∆p

p0
→ x (with 1/ ρ0Kx = ρ0/(1 − n)) restores the2146

unperturbed equation of motion; thus orbits of different momenta p = p0 + ∆p are2147

separated by2148

∆x =
ρ0

1 − n

∆p

p0
(9.25)

from the reference orbit (Fig. 9.8). Introducing the geometrical radius R = (1+ k)ρ02149

(Eq. 9.6) to account for the added drifts, this yields the dispersion function2150

Dx =
∆x

∆p/p0
≡ ∆R

∆p/p0
=

R

(1 − n)(1 + k) =
ρ0

1 − n
, constant, positive (9.26)

where Dx is the chromatic dispersion of the orbits, an s-independent quantity: in a2151

structure with axial symmetry, comprising drift sections (Fig. 9.5) or not (classical2152

and AVF cyclotrons for instance), the ratio ∆x /∆p/p0 is independent of the azimuth2153

s, so the distance of a chromatic orbit to the reference orbit is constant around the2154

ring.2155

Given that n < 1,2156

- higher momentum orbits, p > p0, have a greater radius,2157

- lower momentum orbits, p < p0, have a smaller radius.2158
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The horizontal motion of an off-momentum particle is a superposition of the2159

betatron motion (solution of Hill’s Eq. 9.22 with ∆p/p = 0) and of a particular2160

solution of the inhomogeneous equation (δp/p , 0), namely2161

x(s) =
√
βu(s)εu/π cos

(
νu

s

R
+ φ

)
+

ρ0

1 − n

∆p

p0
(9.27)

The vertical motion is unchanged.2162

Chromatic orbit length2163

In an axially symmetric structure the difference in closed orbit length ∆C = 2π∆R2164

resulting from the difference in momentum comes from the dipoles, as all orbits2165

are parallel in the drifts (Fig. 9.5). Hence, from Eq. 9.26, the relative closed orbit2166

lengthening factor, or momentum compaction, is2167

α =
∆C
C

/
∆p

p0
≡ ∆R

R

/
∆p

p0
=

1

(1 − n)(1 + k) ≈ 1

ν2
x

(9.28)

with k = Nl/πρ0 (Eq. 9.6). Note that the relationship α ≈ 1/ν2
x between momentum2168

compaction and horizontal wave number established for a revolution symmetry2169

structure (Eq. 4.21) still holds when adding drifts.2170

9.2.2 Acceleration2171

The field B in a synchrotron is varied during acceleration (a function performed by
the magnet power supply) concurrently with the variation of the bunch momentum
p (a function performed by the accelerating cavity) in such a way that the beam
stays on the design orbit. Given the energies involved, the magnet supply imposes its
law B(t) (Fig. 9.13), and the cavity follows the best it can. The accelerating voltage
V̂(t) = sinωrft is maintained in synchronism with the revolution motion by ensuring
that

ωrf = hωrev = h
c

R

B(t)√(
m0c
qρ

)2
+ B2(t)

Typically, for a C = 2πR ≈ 70 m circumference ring3, accelerating from β = v/c ≈
0.09 at injection (3.6 MeV protons) to β ≈ 1 at top energy (3 GeV), the revolution
period Trev = C/βc and frequency ωrev/2π = 1/Trev span

{
Trev : 2.6 µs → 23 µs
frev : 390 kHz → 4.3 MHz

3 Case of the SATURNE I weak focusing synchrotron (Fig. 9.1), cf. Exercise 9.1, Tab. 9.1
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Fig. 9.13 Cycling B(t) in a pulsed synchrotron. Ignoring saturation, B(t) is proportional to the
magnet power supply current I (t). Beam injection occurs at low field, in the region of A, while
extraction occurs at top energy on the high field plateau. (AB): field ramp up (acceleration); (BC):
flat top; (CD): field ramp down; (DA’): thermal relaxation. (AA’): repetition period; (1/AA’):
repetition rate; slope: ramp velocity ÛB = dB/dt (T/s).

Energy gain2172

The variation of the particle energy over one turn amounts to the work of the force2173

F = dp/dt = qρdB/dt on the charge at the cavity, namely2174

∆W = F × 2πR = 2πRqρ ÛB (9.29)

In a slow-cycling synchrotron ÛB is usually constant over most of the acceleration
cycle (Eq. 9.3), and so is ∆W . At SATURNE I, for instance

∆W

q
= 2πRρ ÛB = 68.9 × 8.42 × 1.8 = 1044 volts

The field ramp lasts

∆t = (Bmax − Bmin)/ ÛB ≈ Bmax/ ÛB = 0.8 s

The number of turns to the top energy (Wmax ≈ 3 GeV) is

N =
Wmax

∆W
=

3 109 eV

1044 eV/turn
≈ 3 106turns

The dependence of particle mass on field is written

m(t) = γ(t)m0 =
qρ

c

√(
m0c

qρ

)2

+ B(t)2
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Adiabatic damping of the betatron oscillations2175

Particle momentum increases at the accelerating gap, resulting in a decrease of the
amplitude of betatron oscillations (or, an increase if the cavity decelerates). The
mechanism is sketched in Fig. 9.14 (with u standing for x or y): the slope, before
and after (index 2) the cavity is

du

ds
=

m du
dt

m ds
dt

=

pu

ps
,

du

ds

����
2
=

m du
dt

m ds
dt

�����
2

=

pu,2

ps,2

As the kick in momentum is longitudinal, dpu/dt = 0 thus pu,2 = pu and the increase

trajectory
w/o cavity

with cavity
trajectory

p +  ps ∆

p +  pp

p ss

∆

p +  pp s
s

u
p

cavity

u

u

A

B

R du A : cavity entrance
B : cavity exit

is reduced

amplitude

phase
advance

ν ds

Fig. 9.14 Adiabatic damping of betatron oscillations from u′
= pu/ps to u′

2 = pu/(ps + ∆ps) at
the accelerating cavity. In transverse phase space the particle motion invariant εu decreases, as a

result of ∆
(
du
ds

)

in momentum is purely longitudinal, ps,2 = ps + ∆ps . Thus

du

ds

����
2
=

pu

ps + ∆ps
≈ pu

ps
(1 − ∆ps

ps
)

and as a consequence the slope du/ds varies across the cavity,

∆

(
du

ds

)
=

du

ds

����
2
− du

ds
= −du

ds

∆ps

ps

The variation of the slope is proportional to the slope. If∆p/p > 0 (acceleration) then2176

the slope decreases. This variation has two consequences on the betatron oscillation2177

(Fig. 9.14):2178

- a change of the betatron phase,2179

- a modification of the betatron amplitude.2180
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Coordinate transport2181

At the cavity {
u2 = u

u′
2 ≈ pu

ps
(1 − dp

p
) = u′(1 − dp

p
)

In matrix form,2182

(
u2

u′
2

)
= [C]

(
u

u′

)
with [C] =

[
1 0

0 1 − dp

p

]
(9.30)

Since det[C] = 1 − dp

p
, 1 the system is non-conservative and the area of the beam

ellipse in phase space is not conserved. Assume one cavity in the ring and note
[T] × [C] the one-turn coordinate transport matrix with origin at entrance of the
cavity. Its determinant is

det[T] × det[C] = det[C] = 1 − dp

p

The variation of the transverse ellipse area satisfies εu = (1 − dp

p0
)ε0 or, with dεu =2183

εu − ε0, dεu
εu
= − dp

p0
, The solution is2184

p εu = constant, or βγεu = constant (9.31)

Over N turns the coordinate transport matrix is [TN ] = ([T][C])N , thus the ellipse
areachanges by a factor

det[C]N = (1 − dp

p
)N ≈ 1 − N

dp

p

Phase stability2185

Synchrotron motion uses the mechanism of phase stability, or longitudinal focusing2186

(Fig. 9.15), to stabilize the longitudinal motion of a particle in the vicinity of a2187

synchronous phase, φs. It requires2188

(i) the presence of an RF cavity with its frequency locked to the revolution time,2189

(ii) the bunch centroid positioned either on the rising slope of the oscillating2190

voltage (low energy regime), or on the falling slope (high energy regime).2191

The synchronous (or “ideal”) particle follows the equilibrium trajectory (the
reference closed orbit about which all other particles undergo betatron oscillation).
Its velocity satisfies v(t) = qBρ(t)

m
; at each turn it reaches the accelerating gap when

the oscillating voltage is at the synchronous phase φs, and undergoes an energy gain

∆W = qV̂ sin φs
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The condition | sin φs | < 1 imposes a lower limit to the cavity voltage for acceleration
to happen. According to Eq. 9.29,

V̂ > 2πRρ ÛB

V(t)

A B A’ B’ B’’

∆φ=6π

1 turn, h=3

O φ φφ
S,A’ S,A’’S,A
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energy gain
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Fig. 9.15 A sketch of the mechanism of phase stability, h = 3 in this example. Below transition
phase stability occurs for a synchronous phase taken at either one of A, A’, A” arrival times at the
gap. Beyond transition the stable phase is at either one of B, B’, B’ locations.

Referring to Fig. 9.15, the synchronous phase can be placed on the left (A, A’, A” ...2192

series) or on the right (B, B’, B” ... series) of the oscillating voltage crest. One and2193

only one of these two possibilities, and which one depending upon the optical lattice2194

and on particle energy, ensures that particles in a bunch remain grouped in the2195

vicinity of the synchronous particle. The transition is between two time-of-flight2196

regimes: a particle which gains momentum compared to the synchronous particle2197

has a greater velocity, while2198

- in the high bunch energy regime the increase in path length around the ring2199

is faster than the increase in velocity (velocity essentially does not even change2200

in ultrarelativistic regime), a revolution around the ring takes more time (this is the2201

classical cyclotron and synchrocyclotron regime, and as well the high energy electron2202

synchrotron regime); consider such a particle, arriving at the accelerating gap late2203

(φ(t) > φs), in order for it to be pulled toward bunch center (i.e., take less time2204

around the ring) it has to undergo deceleration; this is the B series, above transition;2205

- in the low bunch energy regime velocity increase is faster than path length2206

increase, thus a revolution around the ring is faster; consider such a particle, arriving2207

at the accelerating gap early (φ(t) < φs), in order for it to be pulled toward bunch2208

center (i.e., take more time around the ring) it has to be slowed down, to undergo2209

deceleration; this is the A series, below transition.2210
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Transition energy2211

The transition between the two time-of-flight regimes occurs when
dTrev

Trev
= 0. With

T = 2π/ω = C/v, this can be written

dωrev

ωrev
= −dTrev

Trev
=

dv

v
− dC

C

With dv
v
=

1
γ2

dp

p
and momentum compaction α =

dC
C / dp

p
, (Eq. 9.28), it becomes2212

dωrev

ωrev
= −dTrev

Trev
=

(
1

γ2
− α

)
dp

p
= η

dp

p
(9.32)

which introduces the phase slip factor2213

η =

kinematics
︷︸︸︷

1

γ2
− α︸︷︷︸

lattice

=

1

γ2
− 1

γ2
tr

(9.33)

The “transition gamma”, γtr, is a property of the lattice.2214

In a weak focusing lattice γtr = 1/
√
α ≈ νx (Eq. 9.28 and Classical Cyclotron’s2215

Eq. 4.21). Thus the phase stability regime is2216

below transition, i.e. φs < π/2, if γ < νx

above transition, i.e.φs > π/2, if γ > νx (9.34)

In a weak focusing synchrotron the horizontal tune νx =
√
(1 − n)R/ρ0 (Eq. 9.18)2217

may be >< 1, and subsequently γtr > 1 is a possibility. There is no transition gamma2218

if νx < 1. At SATURNE I for instance, with νx ≈ 0.7 (Tab. 9.1) and γtr < 1. So,2219

ramping in energy did not require crossing transition-gamma4.2220

9.2.3 Depolarizing Resonances2221

The field index is zero in the ZGS, transverse focusing is ensured by wedge angles2222

at the ends of the eight dipoles, the only locations where non-zero horizontal field2223

components are found. The latter are weak and as a consequence so also are depolar-2224

izing resonances: “As we can see from the table, the transition probability [ from spin2225

state ψ1/2 to spin state ψ−1/2] is reasonably small up to γ = 7.1” [12], i.e. proton2226

Gγ = 12.73, p = 6.6 GeV/c. The table referred to stipulates a transition probability2227

4 Transition-gamma crossing is a common beam manipulation during acceleration in strong focusing
synchrotrons. Longitudinally it requires an RF phase jump, the technique is addressed in Chapter 10.
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P1
2 ,−

1
2
< 0.042, whereas resonances beyond that energy range feature P1

2 ,−
1
2
> 0.36.2228

Beam depolarization up to 6 GeV/c, under the effect of these resonances, is illustrated2229

in Fig. 9.16.2230

In a synchrotron using gradient dipoles, particles experience radial fields Bx(y) =2231

−n
B0
ρ0
y as they undergo vertical betatron oscillations [12, 20, 21]. As n is small these2232

radial field components are weak, and so is their effect on spin motion.2233

Assuming a defect-free ring, the vertical betatron motion excites “intrinsic” spin
resonances, located at

GγR = k P ± νy, k ∈ N
with P the period of the ring. In the ZGS for instance, νy ≈ 0.8 (Tab. 9.2), the ring
is P=4-periodic, thus GγR = 4k ± 0.8. Strongest resonances are located at

GγR = k m P ± νy

with m the number of cells per superperiod [22, Sec. 3.II]. In the ZGS, with m=2 the
strongest resonances occur at (Fig. 9.16)

GγR = 2 × 4k ± 0.8 = 7.2 (3.65 GeV/c); 8.8 (4.51 GeV/c); 15.2 (7.9 GeV/c); ...

Fig. 9.16 Polarization loss
at the ZGS [23] through the
strong intrinsic resonances
GγR = 7.2 (p = 3.65 GeV/c)
and 8.8 (4.51 GeV/c) (black
circles). A tune jump method
preserves polarization (empty
circles)

2234

In the presence of vertical orbit defects, non-zero periodic transverse fields are
experienced along the closed orbit, they excite “imperfection”, aka “integer”, depo-
larizing resonances, located at

GγR = k, k ∈ N

In the case of systematic defects the periodicity of the orbit is that of the lattice,
P, imperfection resonances are located at GγR = kP. The strongest imperfection
resonances are located at [22, Sec. 3.II]
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GγR = k m P

Spin precession axis. Resonance width2235

Consider the spin vector
S(θ) = (Sη, Sξ, Sy)

of a particle, in the laboratory frame, with θ the orbital angle around the accelerator.2236

Introduce the projection s(θ) of S in the median plane2237

s(θ) = Sη(θ) + jSξ (θ) (and S2
y = 1 − s2) (9.35)

Fig. 9.17 Modulus of the
horizontal projection of the

spin, s =
√

1 − S2
y , as a

function to the distance to the
resonance normalized to the
resonance strength. s = 1/2
at distance ∆ = ±

√
3ǫR from

GγR
-3 -2 -1  0  1  2  3

1

0.5

s(∆/εR)

∆/εR

-√3 √3

2238

Fig. 9.18 Near an integer
resonance, at any azimuth
θ around the ring spins
S(m) (m is the turn num-
ber, S(m) started vertical,
here) precess at frequency

ω =
√
∆2
+ |ǫR |2 around a

stationary axis n0(θ), whose
orientation varies along the
ring. n0 is aligned along S,
average of S(m) over turns

  n 0

x

s

y
S

_

S
(0

)

S
(m

)

In the case of a stationary solution of the spin motion, viz. stationary spin preces-2239

sion axis around the ring (Fig. 9.18) [21, Sect. 3.6.1], s satisfies [21] (Fig. 9.17)2240
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s2
=

1

1 +
∆

2

|ǫR |2

(9.36)

with ∆ = Gγ −GγR the distance to the resonance; thus the resonance width appears2241

to be a measure of its strength. The quantity of interest is the angle, φ, of the spin

Fig. 9.19 Dependence of
polarization on the distance
to the resonance. For instance
Sy = 0.99, 1% depolarization,
corresponds to ∆ = ±7 |ǫR |.
On the resonance, ∆ = 0,
the precession axis lies in the
median plane, Sy = 0

-6 -4 -2  0  2  4  6

7-7

 0.99  0.99

1

0.5

Sy(∆/εR)

∆/εR

2242

precession direction to the vertical axis. It is given by (Fig. 9.19)2243

cos φ(∆) ≡ Sy(∆) =
√

1 − s2
=

∆/|ǫR |√
1 + ∆2/|ǫR |2

(9.37)

On the resonance, with ∆ = 0, the spin precession axis lies in the bend plane:2244

φ = ±π/2. A depolarization by 1% (Sy = 0.99) corresponds to a distance to the2245

resonance ∆ = 7|ǫR |, spin precession axis at an angle φ = acos(0.99) = 8o from the2246

vertical.2247

Conversely, given Sy ,2248

∆
2

|ǫR |2
=

S2
y

1 − S2
y

(9.38)

The precession axis is common to all spins, while Sy is a measure of the polarization
along the vertical axis,

Sy =
N+ − N−

N+ + N−

where N+ and N− denote the number of particles in spin states 1
2 and− 1

2 respectively.2249

Things complicate a little in the vicinity of an intrinsic resonance [21, Sect. 3.6.2],2250

the precession axis is not stationary, it precesses itself around the vertical, Fig. 9.20.2251
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Fig. 9.20 Near an intrinsic
resonance, spins S(m) precess
at frequency ω around an
axis n, which itself precesses
around the vertical axis at
frequency Gγ
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Resonance crossing2252

Crossing an isolated depolarizing resonance (Figs. 9.16, 9.21) causes a loss of2253

polarization given by the Froissart-Stora formula [24] [21, Sect. 2.3.6],2254

Pf

Pi

= 2e
− π

2
|ǫR |2
α − 1 (9.39)

from a value Pi upstream to an asymptotic value Pf downstream of the resonance.2255

Here ǫR is the strength of the resonance [21, Sect. 2.3.5], and2256

α = G
dγ

dθ
=

1

2π

∆E

M
(9.40)

is the crossing speed for an energy gain ∆E per turn.2257

Fig. 9.21 Vertical component
of spin motion Sy (θ) through
a weak depolarizing resonance
(Eq. 9.41). The vertical line
is at the location of the
resonance, which coincides
with the origin of the orbital
angle
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Spin motion through weak resonances2258

Depolarizing resonances are weak up to several GeV in a weak focusing synchrotron
because the radial and/or longitudinal fields are weak. Thus assume Sy,f ≈ Sy,i, with
Sy,f and Sy,i the asymptotic vertical spin component values respectively upstream
and downstream of the resonance. With the origin of the orbital angle taken at the
resonance (Fig. 9.21), and introducing the Fresnel integrals [21]

C(x) =
∫ x

0
cos

( π
2

t2
)

dt, S(x) =
∫ x

0
sin

( π
2

t2
)

dt

the polarization satisfies2259

if θ < 0 :

(
Sy(θ)
Sy,i

)2

= 1 − π |ǫR |2
α

{[
1
2 − C

(
−θ

√
α

π

)]2

+

[
1
2 − S

(
−θ

√
α

π

)]2
}

if θ > 0 :

(
Sy(θ)
Sy,i

)2

= 1 − π |ǫR |2
α

{[
1
2 + C

(
θ

√
α

π

)]2

+

[
1
2 + S

(
θ

√
α

π

)]2
}

(9.41)
In the asymptotic limit,2260

Sy(θ)
Sy,i

θ−→∞−→ 1 − π

α
|ǫR |2 (9.42)

which agrees with the development of Froissart-Stora formula, Eq. 9.39, to first2261

order in |ǫR |2/α. This approximation holds in the limit that higher order terms can2262

be neglected: |ǫR |2/α ≪ 1.2263
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9.3 Exercises2264

9.1 Construct SATURNE I (weak index) synchrotron. Spin Resonances2265

Solution: page 317.2266

In this exercise, the weak focusing 3 GeV synchrotron SATURNE I (Fig. 9.1) is2267

modeled. Spin resonances in a weak dipole gradient lattice are observed.2268

Table 9.1 Parameters of SATURNE I weak focusing synchrotron [25]. ρ0 denotes the reference
bending radius in the dipole; the reference orbit, field index, wave numbers, etc., are taken along
that radius

Orbit length, C cm 6890
Average radius, R = C/2π cm 1096.58
Drift length, 2l cm 400
Magnetic radius, ρ0 cm 841.93
R/ρ0 = 1 + k 1.30246
Field index n, nominal 0.6
Wave numbers νx , νy , nominal 0.72, 0.89
Stability limit 0.5 < n < 0.757
Injection energy (proton) MeV 3.6
Field at injection kG 0.326
Top energy GeV 2.94
Field at top energy, Bmax kG 14.9
ÛB kG/s 18

Synchronous energy gain keV/turn 1.160
RF harmonic 2

Fig. 9.22 A schematic layout
of SATURNE I, a 2π/4 axial
symmetry structure, com-
prised of 4 radial field index
90 deg dipoles and 4 drift
spaces. The cell in the simu-
lation exercises is taken as a
π/2 quadrant: half-drift / 90o-
dipole / half-drift

ρ
ο

    

2l

(a) Construct a model of SATURNE I 90o cell dipole in the hard-edge model,2269

using DIPOLE. Use the parameters given in Tab. 9.1, and Fig. 9.22 as a guidance.2270

For beam monitoring purposes, split the dipole in two 45odeg halves. It is judicious2271
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to take RM=841.93 cm in DIPOLE, as this is the reference radius for the definition2272

of the radial index. Take an integration step size in centimeter range - small enough2273

to ensure numerical convergence, as large as doable for fast multiturn raytracing.2274

Validate the model by producing the 6 × 6 transport matrix of the cell dipole2275

(MATRIX[IFOC=0] can be used for that, with OBJET[KOBJ=5] to define a proper2276

set of paraxial initial coordinates) and checking against theory (Sect. 15.2, Eq. 15.6).2277

(b) Construct a model of SATURNE I cell, with origin at the center of the drift.2278

Find the closed orbit, that particular trajectory which has all its coordinates zero in2279

the drifts: use DIPOLE[KPOS] to cancel the closed orbit coordinates at DIPOLE2280

ends. While there, check the expected value of the dispersion (Eq. 9.26) and of2281

the momentum compaction (Eq. 9.28), from the raytracing of a chromatic closed2282

orbit - i.e., the orbit of an off-momentum particle. Plot these two orbits (on- and2283

off-momentum), over a complete turn around the ring, on a common graph.2284

Compute the cell periodic optical functions and tunes, using either MA-2285

TRIX[IFOC=11] or TWISS; check their values against theory. Check consistency2286

with previous dispersion function and momentum compaction outcomes.2287

Move the origin of the lattice at a different azimuth s along the cell: verify that,2288

while the transport matrix depends on the origin, its trace does not.2289

Produce a graph of the optical functions (betatron functions and dispersion) along2290

the cell. Check the expected average values of the betatron functions (Eq. 9.21).2291

Produce a scan of the tunes over the field index range 0.5 ≤ n ≤ 0.757. RE-2292

BELOTE can be used to repeatedly change n over that range. Superimpose the2293

theoretical curves νx(n), νy(n).2294

(c) Justify considering the betatron oscillation as sinusoidal, namely,

y(θ) = A cos(νyθ + φ)

wherein θ = s/R, R =
∮

ds/2π.2295

(d) Launch a few particles evenly distributed on a common paraxial horizontal2296

Courant-Snyder invariant, vertical motion taken null (OBJET[KOBJ=8] can be used),2297

for a single pass through the cell. Store particle data along the cell in zgoubi.plt,2298

using DIPOLE[IL=2] and DRIFT[split,N=20,IL=2]. Use these to generate a graph2299

of the beam envelopes.2300

Using Eq. 9.23 compare with the results obtained in (b). Find the minimum2301

and maximum values of the betatron functions, and their azimuth s(min[βx]),2302

s(max[βx]). Check the latter against theory.2303

Repeat for the vertical motion, taking εx = 0, εy paraxial.2304

Repeat, using, instead of several particles on a common invariant, a single particle2305

traced over a few tens of turns.2306

(e) Produce an acceleration cycle from 3.6 MeV to 3 GeV, for a few particles2307

launched on a common 10−4 πm initial invariant in each plane. Ignore synchrotron2308

motion (CAVITE[IOPT=3] can be used in that case). Take a peak voltage V̂ = 200 kV2309

(unrealistic though, as it would result in a nonphysical ÛB (Eq. 9.29)) and synchronous2310

phase φs = 150 deg (justify φs > π/2).2311
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Check the betatron damping over the acceleration range: compare with theory2312

(Eq. 9.31).2313

How close to symplectic the numerical integration is (it is by definition not2314

symplectic, being a truncated Taylor series method [26, Eq. 1.2.4]), depends on the2315

integration step size, and on the size of the flying mesh in the DIPOLE method [26,2316

Fig. 20]; check a possible departure of the betatron damping from theory as a function2317

of these parameters.2318

Produce a graph of the horizontal and vertical wave number values over the2319

acceleration cycle.2320

(f) Some spin motion, now. Adding SPNTRK at the beginning of the sequence2321

used in (e) will ensure spin tracking.2322

Based on the input data file worked out for question (d), simulate the acceleration2323

of a single particle, through the intrinsic resonance GγR = 4− νy , from a distance of2324

a few times the resonance strength upstream (this requires determining BORO value2325

under OBJET) to a distance of a few times the resonance strength downstream of the2326

resonance, at an acceleration rate of 10 kV/turn.2327

OBJET[KOBJ=8] can be used to allow to easily define an initial invariant value.2328

Start with spin vertical. On a common graph, plot Sy(turn) for a few different2329

values of the vertical betatron invariant (the horizontal invariant value does not2330

matter - explain that statement, it can be taken zero). Derive the resonance strength2331

from this tracking, check against theory.2332

Repeat, for different crossing speeds.2333

Push the tracking beyond Gγ = 2×4+νy: verify that the sole systematic resonances2334

Gγ = integer × P ± νy are excited - with P = 4 the periodicity of the ring.2335

Break the 4-periodicity of the lattice by perturbing the index in one of the 42336

dipoles (say, by 10%), verify that all resonances Gγ = integer± νy are now excited.2337

(g) Consider a case of weak resonance crossing, single particle (i.e., a case where2338

Pf /Pi ≈ 1, taken from (f); crossing speed may be increased, or particle invariant2339

decreased if needed), show that it satisfies Eq. 9.41. Match its turn-by-turn tracking2340

data to Eq. 9.41 so to get the vertical betatron tune νy , the location of the resonance2341

GγR, and its strength.2342

(h) Stationary spin motion (i.e. at fixed energy) is considered in this question.2343

Track a few particles with distances from the resonance∆ = Gγ−GγR = Gγ−(4−νy)2344

evenly spanning the interval ∆ ∈ [0, 7 × ǫR].2345

Produce on a common graph the spin motion Sy(turn) for these particles, as2346

observed at some azimuth along the ring.2347

Produce a graph of
〈
Sy

〉
|turn(∆) (as in Fig. 9.19). Produce the vertical betatron

tune νy , the location of the resonance GγR, and its strength, obtained from a match
of

〈
Sy

〉
|turn(∆) to (Eq. 9.37)

〈
Sy

〉
(∆) = ∆√

|ǫR |2 + ∆2

(i) Track a 200-particle 6-D bunch, with Gaussian transverse densities of εx,y a2348

few µm, and Gaussian δp/p with σδp/p = 10−4. Produce a graph of the average2349
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value of Sy over a 200 particle set, as a function of Gγ, across the GγR = 4 − νy2350

resonance. Indicate on that graph the location of the resonant GγR values.2351

Perform this resonance crossing for five different values of the particle invariant:2352

εy/π = 2, 10, 20, 40, 200 µm. Compute Pf /Pi in each case, check the dependence2353

on εy against theory.2354

Compute the resonance strength, εy , from this tracking.2355

Re-do this crossing simulation for a different crossing speed (take for instance2356

V̂ = 10 kV) and a couple of vertical invariant values, compute Pf /Pi so obtained.2357

Check the crossing speed dependence of Pf /Pi against theory.2358

9.2 Construct the ZGS (zero-gradient) synchrotron. Spin Resonances2359

Solution: page 341.2360

In this exercise, the ZGS 12 GeV synchrotron is modeled. Spin resonances in a2361

zero-gradient, wedge focusing synchrotron are studied.2362

A photo taken in the ZGS tunnel is given in Fig. 9.4; a schematic layout of the ring2363

is shown in Fig. 9.23, and a sketch of the double dipole cell in Fig. 9.24. Table 9.22364

details the parameters of the synchrotron resorted to in these simulations.2365

Fig. 9.23 A schematic layout of the ZGS [23], a π/2-periodic structure, comprised of 8 zero-index
dipoles, 4 long and 4 short straight sections

(a) Construct a model of ZGS 45o cell dipole in the hard-edge model, using2366

DIPOLE. Use the parameters given in Tab. 9.2, and Figs. 9.23, 9.24 as a guidance.2367

For beam monitoring purposes, split the dipole in two 22.5odeg halves. Take the2368
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closed orbit radius as the reference RM=2076 cm in DIPOLE: it will be assumed2369

that the orbit is the same at all energies5. Take an integration step size in centimeter2370

range - small enough to ensure numerical convergence, as large as doable for fast2371

multiturn raytracing.2372

Validate the model by producing the 6 × 6 transport matrices of both dipole2373

(MATRIX[IFOC=0] can be used for that, with OBJET[KOBJ=5] to define a proper2374

set of paraxial initial coordinates) and checking against theory (Sect. 15.2, Eq. 15.6).2375

Add fringe fields in DIPOLE[λ,C0 − C5], the rest if the exercise will use that2376

model. Take fringe field extent and coefficient values2377

λ = 60 cm C0 = 0.1455, C1 = 2.2670, C2 = −0.6395, C3 = 1.1558, C4 = C5 = 0
(9.43)

(C0 − C5 determine the shape of the field fall-off, they have been computed from a2378

typical measured field profile B(s)).2379

(b) Construct a model of ZGS cell accounting for dipole fringe fields, with origin2380

at the center of the long drift. In doing so, use DIPOLE[KPOS] to cancel the closed2381

orbit coordinates at DIPOLE ends.2382

Compute the periodic optical functions at cell ends, and cell tunes, using MA-2383

TRIX[IFOC=11]; check their values against theory.2384

Move the origin at the location (azimuth s along the cell) of the betatron functions2385

extrema: verify that, while the transport matrix depends on the origin, its trace does2386

not. Verify that the local betatron function extrema, and the dispersion function, have2387

the expected values.2388

Produce a graph of the optical functions (betatron functions and dispersion) along2389

the cell.2390

Fig. 9.24 A sketch of ZGS
cell layout. In defining the
entrance and exit faces (EFBs)
of the magnet, beam goes from
left to right. Wedge angles at
the long straight sections
(ε1) and at the short straight
sections (ε2) are different

ε > 0

   

   

2ε > 0
     

1

ε > 02

ε > 0
1

α α

ρρ

(c) Additional verifications regarding the model.2391

Produce a graph of the field B(s)2392

5 Note that in reality the reference orbit in ZGS moved outward during acceleration [27].
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Table 9.2 Parameters of the ZGS weak focusing synchrotron after Refs. [27, 28] [23, pp. 288-
294,p. 716] (2nd column, when they are known) and in the present simplified model and numerical
simulations (3rd column). Note that the actual orbit moves during ZGS acceleration cycle, tunes
change as well - this is not taken into account in the present modeling, for simplicity

From Simplified
Refs. [27, 28] model

Injection energy MeV 50
Top energy GeV 12.5
Gγ span 1.888387 - 25.67781
Length of central orbit m 171.8 170.90457
Length of straight sections, total m 41.45 40.44
Lattice

Wave numbers νx ; νy 0.82; 0.79 0.849; 0.771

Max. βx ; βy m 32.5; 37.1

Magnet

Length m 16.3 16.30486
(magnetic)

Magnetic radius m 21.716 20.76
Field min.; max. kG 0.482; 21.5 0.4986; 21.54
Field index 0
Yoke angular extent deg 43.02590 45
Wedge angle deg ≈10 13 and 8

RF

Rev. frequency MHz 0.55 - 1.75 0.551 - 1.751

RF harmonic h=ωrf/ωrev 8
Peak voltage kV 20 200
B-dot, nominal/max. T/s 2.15/2.6
Energy gain, nominal/max. keV/turn 8.3/10 100
Synchronous phase, nominal deg 150
Beam

εx ; εy (at injection) πµm 25; 150
Momentum spread, rms 3 × 10−4

Polarization at injection % >75 100
Radial width of beam (90%), at inj. inch 2.5

√
βxεx/π = 1.1

- along the on-momentum closed orbit, and along off-momentum chromatic closed2393

orbits, across a cell;2394

- along orbits at large horizontal excursion;2395

- along orbits at large vertical excursion.2396

For all these cases, verify qualitatively, from the graphs, that B(s) appears as2397

expected.2398

(d) Justify considering the betatron oscillation as sinusoidal, namely,

y(θ) = A cos(νyθ + φ)

wherein θ = s/R, R =
∮

ds/2π.2399

(e) Produce an acceleration cycle from 50 MeV to 17 GeV about, for a few particles2400

launched on a common 10−5 πm vertical initial invariant, with small horizontal2401

invariant. Ignore synchrotron motion (CAVITE[IOPT=3] can be used in that case).2402
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Take a peak voltage V̂ = 200 kV (this is unrealistic but yields 10 times faster2403

computing than the actual V̂ = 20 kV, Tab. 9.2) and synchronous phase φs = 150 deg2404

(justify φs > π/2). Add spin, using SPNTRK, in view of the next question, (f).2405

Check the accuracy of the betatron damping over the acceleration range, compared2406

to theory. How close to symplectic the numerical integration is (it is by definition2407

not symplectic), depends on the integration step size, and on the size of the flying2408

mesh in the DIPOLE method [26, Fig. 20]; check a possible departure of the betatron2409

damping from theory as a function of these parameters.2410

Produce a graph of the evolution of the horizontal and vertical wave numbers2411

during the acceleration cycle.2412

(f) Using the raytracing material developed in (e): produce a graph of the vertical2413

spin component of a few particles, and the average value over the 200 particle bunch,2414

as a function of Gγ. Indicate on that graph the location of the resonant GγR values.2415
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(g) Based on the simulation file used in (f), simulate the acceleration of a sin-2416

gle particle, through one particular intrinsic resonance, from a few thousand turns2417

upstream to a few thousand turns downstream.2418

Perform this resonance crossing for different values of the particle invariant.2419

Determine the dependence of final/initial vertical spin component value, on the2420

invariant value; check against theory.2421

Re-do this crossing simulation for a different crossing speed. Check the crossing2422

speed dependence of final/initial vertical spin component so obtained, against theory.2423

(h) Introduce a vertical orbit defect in the ZGS ring.2424

Find the closed orbit.2425

Accelerate a particle launched on that closed orbit, from 50 MeV to 17 GeV about,2426

produce a graph of the vertical spin component.2427

Select one particular resonance, reproduce the two methods of (g) to check the2428

location of the resonance at GγR =integer, and to find its strength.2429
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Chapter 102493

Strong Focusing Synchrotron2494

Abstract This Chapter introduces the strong focusing synchrotron, alternating gra-2495

dient (AG) and separated focusing, and the theoretical material needed for the simula-2496

tion exercises. It begins with a brief reminder of the historical context, and continues2497

with beam optics, chromaticity, and acceleration. It relies on basic charged particle2498

optics and acceleration concepts introduced in the previous Chapters, and further2499

addresses the following aspects:2500

- resonances and resonant extraction,2501

- stochastic energy loss by synchrotron radiation.2502

The simulation of a strong focusing synchrotron requires just two, possibly three,2503

optical elements from zgoubi library: DIPOLE, BEND, or MULTIPOL to sim-2504

ulate (possibly combined function) dipoles, DRIFT to simulate straight sections,2505

and MULTIPOL to simulate lenses (which can be otherwise simulated using2506

QUADRUPO, SEXTUPOL, OCTUPOLE, etc.). A fourth element, CAVITE, is re-2507

quired for acceleration. Particle monitoring requires keywords introduced in the pre-2508

vious Chapters, including FAISCEAU, FAISTORE, possibly PICKUPS, and some2509

others. Spin motion computation and monitoring resort to SPNTRK, SPNPRT, FAI-2510

STORE. Optics matching and optimization use FIT[2]. INCLUDE is used, mostly2511

here in order to shorten the input data files. SYSTEM is used to, mostly, resort to2512

gnuplot so as to end simulaitons with some specific graphs obtained by reading2513

data from output files such as zgoubi.fai (resulting from the use of FAISTORE),2514

zgoubi.plt (resulting from IL=2), or other zgoubi.*.out files resulting from a PRINT2515

command.2516

107
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Notations used in the Text2517

B; B, Bx,y,s field value; field vector, its components in the moving frame
Bρ = p/q; Bρ0 particle rigidity; reference rigidity

C; C0 orbit length, C = 2πR +
[ straight
sections ; reference, C0 = C(p = p0)

E particle energy
EFB Effective Field Boundary
frev, frf = frev revolution and accelerating voltage frequencies
G gyromagnetic anomaly, G = 1.792847 for proton
G; K = G/Bρ quadrupole gradient; focusing strength
m; m0; M mass, m = γm0; rest mass; in units of MeV/c2

p; p; p0 momentum vector; its modulus; reference
Pi, Pf beam polarization, initial, final
q particle charge
r, R orbital radius ; average radius, R = C/2π
s path variable
v particle velocity
V(t); V̂ oscillating voltage; its peak value

x, x’, y, y’, l, dp

p
horizontal, vertical, longitudinal coordinates in moving frame

α momentum compaction
α trajectory angle
β = v/c; β0; βs normalized particle velocity; reference; synchronous
βu betatron functions (u : x, y,Y, Z)
γ = E/m0 Lorentz relativistic factor
δp momentum offset or Dirac distribution
∆p momentum offset
ε wedge angle
εu Courant-Snyder invariant (u : x, r, y, l,Y, Z, s, etc.)
ǫR strength of a depolarizing resonance
µu betatron phase advance, µu =

∫
period

ds/βu(s) (u : x, y,Y, Z)

νu wave numbers, horizontal, vertical, synchrotron (u : x, y,Y, Z, l)
ρ, ρ0 curvature radius; reference
σ beam matrix
φ; φs particle phase at voltage gap; synchronous phase
φu betatron phase advance, φu =

∫
ds/βu (u : x, y,Y, or Z)

ϕ spin angle to the vertical axis

2518

10.1 Introduction2519

In the very manner that the 1930s-1940s cyclotron, betatron, microtron, weak fo-2520

cusing synchrotron, still in use today, have since essentially not changed in their2521
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concepts, design principles, magnet gap profile, today’s gap profile, yoke and cur-2522

rent coil geometry of combined function alternating-gradient (AG) dipoles remain2523

essentially as patented in 1950 (Fig. 10.1) [1].

Fig. 10.1 Bending magnet
pole profiles for a focussing

system for ions and elec-

trons [1]. Assuming curvature
center to the left, the right
(respectively left) profile is
defocusing (resp. focusing),
the middle profile has zero
index

2524

In 1952, in the context of studies relative to the Cosmotron, strong focusing was2525

devised at the Brookhaven National Laboratory (BNL): “Strong focusing forces re-2526

sult from the alternation of large positive and negative n-values in successive sectors2527

of the magnetic guide field in a synchrotron. This sequence of alternately converg-2528

ing and diverging magnetic lenses [...] leads to significant reductions in oscillation2529

amplitude” [2]. It led to the construction of the first two high-energy proton AG2530

synchrotrons, in the 30 GeV range, in the late 1950s: the proton-synchrotron (PS)2531

at CERN, and the AGS at BNL, major pieces 60 years later still, of the respective2532

injection chains of the two largest colliders in operation, the LHC and RHIC. Early2533

works at BNL provided theoretical formalism, still at work today, for the analyzis of2534

beam dynamics in synchrotrons [3].2535

The optical principle behind the AG concept is that a doublet of focusing and2536

defocusing lenses with proper stengths results in a, possibly quite strong, very short2537

focal distance, converging system. The dramatic effect of strong-index AG on trans-2538

verse beam size allows small dipole gaps, thus small magnets: from lowest energies2539

(medical synchrotrons in the 100 MeV range for instance) to the highest ones (par-2540

ticle physics and nuclear physics colliders, hundreds of GeV to multi-TeV range),2541

beams are essentially confined in a centimeter scale transverse space, making a syn-2542

chrotron a string of dipole magnets containing beam in a ring vacuum pipe of cm to2543

10 cm diameter; the size of the ring is essentially determined by its circumference,2544

proportional to the magneitc rigidity. This revolutionized the race to high energies,2545

from an upper 10 GeV about of the prior weak focusing synchrotrons and their huge2546

magnets, to todays 7 TeV at the LHC with magnets transverse size in the meter range,2547

and with further plans for 100 TeV rings [5]. It fostered as well the development of2548

high energy synchrotron light sources around the world, with electron beam energies2549

up to 8 GeV.2550

The original AG dipole design (that of the PS and AGS rings), whereby gradient2551

dipoles combine beam guiding and beam focusing, has the benefit of compactness.2552

It is still prised today and resorted to, for instance in hadrontherapy applications2553

(Fig. 10.3); light source lattice vertical focusing [7], etc. Seperated function AG2554

focusing, whereby beam guiding is ensured by uniform field dipoles while focusing2555

is ensured separately by quadrupoles, followed from the development of the latter2556
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Fig. 10.2 Top: the AGS combined function main magnet - one of 240 steering the beam around
the ring, bottom: the 809 m circumference AGS synchrotron [4]. The hyperbolic profile poles are
visible on the top photo, partly hidden by the field coils

Fig. 10.3 The ion rapid
cycling medical synchrotron
(iRCMS) [6], an RCS aimed
at providing ion beams for the
treatment of cancer tumours

(Fig.10.4), a spin-off of the strong index technology [8]. Separated function optics2557

has the merit of flexibility, allowing modular functions in complex rings such as2558

bending-free dispersion suppression sections, low-beta collision or insertion device2559

sections, long straights, etc. Low-emittance, high-brightness light source lattices2560

have complicated focusing further, by introducing longitudinal field gradient bending2561

systems, aimed at minimizing the chromatic invariant [9].2562

Due to the necessary ramping of the field in order to maintain a constant orbit,2563

synchrotrons accelerators are pulsed, some storage rings species are pulsed as well,2564

high energy colliders in particular to bring beams to highest store energy. The accel-2565

eration is cycled and the accelerating voltage fequency as well in ion accelerators,2566

from injection to top energy. If the ramping uses a constant electromotive force, then2567

(Eq. 9.3)2568

B(t) ≈ t

τ
(10.1)
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Fig. 10.4 A quadrupole mag-
net at LBL in 1957, used for
beam lines at the 184-inch
cyclotron. An early specimen
here, obviously, being a spin-
off of the early 1950s concept
of strong focusing [10]

ÛB = dB/dt does not exceed a few Tesla/second, thus the repetition rate of the2569

acceleration cycle if of the order of a Hertz. If instead the magnet winding is part of2570

a resonant circuit then the field oscillate,2571

B(t) = B0 +
B̂

2
(1 − cosωt) (10.2)

so that, in the interval of half a voltage repetition period (i.e., t : 0 → π/ω) the2572

field increases from an injection threshold value to a maximum value at highest2573

rigidity, B(t) : B0 → B0 + B̂. The latter determines the highest achievable energy:2574

Ê = pc/β = qB̂ρc/β. The repetition rate with resonant magnet cycling can reach2575

a few tens of Hertz, a species known as a rapid-cycling synchrotron (RCS). In both2576

cases anyway B imposes its law and the other quantities comprising the acceleration2577

cycle (RF frequency in particular) will follow B(t).2578

Rapid cycling allows high intensity beams. Instances are the Cornell 12 GeV,2579

60 Hz, electron synchrotron, commissioned in 1967, today the injector of Cornell2580

5 GeV synchrotron light source (CHESS); Fermilab 8 GeV, 60 Hz, booster which2581

provides protons for the production of neutrino beams; the 30 GeV 500 kW beam J-2582

PARC facility in Japan. Rapid cycling is also considered in ion-therapy applications,2583

Fig. 10.3.2584

10.2 Basic Concepts and Formulæ2585

Alternating gradient focusing is sketched in Fig. 10.5.2586

The focusing index value can be estimated from the fields met in these structures:2587

a maximum B ∼ 1 Tesla in the dipole gap, and as well at pole tip in quadrupoles2588

∼10 cm off axis. The latter results in ∆B
∆x

∼10 T/m, the former in ∼meters to tens of2589

meters dipole curvature radius. All in all,2590
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Fig. 10.5 Horizontally focus-
ing lenses (field index n ≫ 0,
the solid red trajectory) are
vertically defocusing (n ≪ 0,
the dashed blue trajectory),
and vice versa. This imposes
alternating gradients in order
for a sequence to be globally
focusing.

s

n =
ρ

B

∂B

∂x
∼

100∼2
[m]

1[T]
× 10[T/m] ∼101∼3 ≫ 1 (10.3)

much greater than in a weak focusing structure, characterized by 0 < n < 1.2591

10.2.1 Components of the Strong Focusing Optics2592

Combined function (AG) optics2593

This is, typically, the BNL AGS and CERN PS optics, using dipoles that ensure both2594

beam guiding and focusing (Fig. 10.2). Separate quadrupole and multipole lenses2595

have later been introduced in these lattices as they provide knobs for the adjustment2596

of optical functions and parameters.2597

AG optics is still at work in modern designs, as in th iRCMS whose six 60 deg2598

arcs are comprised of a sequence of five focusing and defocusing combined function2599

dipoles [6], Fig. 10.3.2600

Field2601

Referring to the normal conducting magnet technology, an hyperbolic pole profile2602

(Fig. 10.1): equipotential V(x, y) = A xy (A a constant, typically ∼ 10 T/m, cf.2603

Eq. 10.3), results in By =
∂V
∂y
= A x, i.e. a radial field index n =

ρ

By

∂B
∂x

|y=0,2604

responsible for the focusing; the pole profile opens up either inward (toward the2605

center of curvature, a horizontally focusing dipole, vertically defocusing) or outward2606

(a vertically focusing dipole, horizontally defocusing), Fig. 10.6.2607

In a straight AG dipole a line of constant field is a straight line; an instance is2608

the AGS main magnet (Fig. 10.2). Another instance is the Fermilab recycler arcs2609

permanent magnet dipole, which includes quadrupole and sextupole components [11,2610

12]. The modeling of the field can be derived from the Laplace potential V(s, x, y),2611

see below; the AGS on-line model uses that technique [13].2612

In a bent AG dipole a line of constant field is an arc of a circle; the field guides2613

the reference particle along the arc in the median plane. The mid-plane field can be2614

expressed as2615
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Fig. 10.6 Beam focusing in combined
function dipoles. The center of curva-
ture is to the left. The pole profile fol-
lows an equipotential V = axy. Top:
the pole profile opens up towards the
center of curvature → the dipole is hor-
izontally converging (vertically diverg-
ing: current I comes out of the page,
force F results from field B). Bottom:
pole profile closing toward the center of
curvature → the dipole is horizontally
diverging, vertically converging

B

F

center
Toward

of ring

smaller gap,
I

vacuum pipe
weaker curvature.

stronger curvature.       
stronger field,

lower field,
larger gap,

N

S

CONVERGING SECTOR

center
Toward

of ring

IF

DIVERGING SECTOR

S

N

B

By(r, θ) = G(r, θ) B0

(
1 + n

r − r0

r0
+ n2

(
r − r0

r0

)2

+ n3

(
r − r0

r0

)3

+ ...

)
(10.4)

with r0 the eference radius. Higher order indices, sextupole n2, octupole n3, ...,2616

may be residual effects: fabrication tolerance, saturation, magnetic permeability,2617

deformation of yoke with years, ..., as in the AGS dipoles, or included by design.2618

In a straight AG dipole a line of constant field is a straight line; an instance is2619

the AGS main magnet (Fig. 10.2). Another instance is the Fermilab recycler arcs2620

permanent magnet dipole, which includes quadrupole and sextupole components [11,2621

12]. The modeling of the field in a straight combined function dipole can be derived2622

from the scalar potential of Eq. 10.5.2623

Separated function optics2624

Main bends have zero index and ensure beam guiding. In smaller rings though,2625

bending may contribute horizontal focusing; wedge angles in addition may be intro-2626

duced and contribute some horizontal and vertical focusing/defocusing. Quadrupole2627

lenses, alternately focusing and defocusing, ensure the essential of the focusing.2628

Higher order multipole lenses are used for the compensation of adverse effects:2629

coupling, aberrations, space charge, impedance, etc., and for beam manipulations:2630

coupling, resonant extraction, etc.2631

The field in a multipole of order n (n = 1, 2, 3, ...: dipole, quadrupole, sextupole,2632

...) derives, via B = gradV , from the Laplace potential [14]2633

Vn = (n!)2



∞∑

q=0

(−)qα(2q)
n,0 (s)

(x2
+ y

2)q
4qq!(n + q)!




{
xn−mym

m!(n − m)! sin m
π

2

}
(10.5)
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d2x

ds2
+ Kx(s)x =

1

ρ0

∆p

p0
,

d2
y

ds2
+ Ky(s)y = 0 (10.6)

wherein Kx(s), Ky(s) have the periodicity of the lattice, and depend locally on the2655

nature of the optical elements:2656

− dipole :




Kx =
1 − n

ρ2
0

Ky =
n

ρ2
0

(n = − ρ0
B0

∂By

∂x
)

− a wedge at s = s0 :

{
K

x
y

= ± tan ε

ρ0
δ(s − s0)

(
ε <> 0 : focusing

defocusing

)
; 1

ρ0
= 0

− quadrupole (gradient G =
field at pole tip

radius at pole tip ) : K
x
y

=

±G

Bρ
;

1

ρ0
= 0

− drift space : Kx = Ky = 0;
1

ρ0
= 0

(10.7)
By contrast with the single index (0 < n < 1) betatron and weak focusing2657

technologies, strong focusing with its independent focusing (G > 0) and defocusing2658

(G < 0) families allows separate adjustment of the horizontal and vertical focusing2659

strengths, and wave numbers as a consequence.2660

The on-momentum (p = p0) closed orbit coincides with the reference axis of2661

the optical structure. The betatron motion for an on-momentum particle, i.e. the2662

excursion x, y around the closed orbit, satisfies Eq. 10.6 with ∆p = 0. Solving the2663

latter (see Sect. 9.2) requires introducing two independent solutions u 1
2
(s) (Eq. 9.12),2664

the linear combination of which yields the pseudo harmonic motion (Eq. 9.15)2665

��������

u(s) =
√
β(s)ε/π cos

(∫ ds

β(s) + ϕ
)

u′(s) = −
√
ε/π
β(s) sin

(∫ ds

β(s) + ϕ
)
+ α(s) cos

(∫ ds

β(s) + ϕ
) (10.8)

The motion satisfies the Courant-Snyder invariant, namely (Fig. 9.10)2666

γu(s)u2
+ 2αu(s)uu′

+ βu(s)u′2
=

εu

π
(10.9)

The form and the orientation of this phase space ellipse change along the period, its2667

surface is constant.2668

Beam envelopes are given by the extrema,2669

x̂env(s) = ±
√
βx(s)

εx

π
, ŷenv(s) = ±

√
βy(s)

εy

π
(10.10)
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Phase space motion2670

Write the two independent solutions u 1
2
(s) (Eq. 9.12) under the form2671

u1(s) = F(s)
︸︷︷︸

S−periodic

× e
iµ s

S︸︷︷︸
2πS
µ

−periodic

and u2(s) = u∗1(s) = F∗(s) e
−iµ s

S (10.11)

wherein F(s) =
√
β(s) e

i

(∫ s

0

ds

β(s) − µ
s

S

)

. Introduce ψ(s) =
∫ s

0

ds

β(s) − µ
s

S
so that2672

F(s) =
√
β(s) eiψ(s), Eq. 10.8 thus takes the form2673

�������������

u(s) =

S−periodic
︷      ︸︸      ︷√
β(s)ε/π

2πS
µ

−periodic

︷                     ︸︸                     ︷
cos

[
ν

s

R
+ ψ(s)

︸︷︷︸
S−per.

+ϕ
]

u′(s) = −
√
ε/π
β(s) sin

[
ν

s

R
+ ψ(s) + ϕ

]
+ α(s) cos

[
ν

s

R
+ ψ(s) + ϕ

]

(10.12)

wherein ν =
Nµ

2π
. Thus, as β(s) and ψ(s) are S-periodic functions, the turn-by-turn2674

motion observed at a given azimuth s (i.e., u(s), u(s+S), u(s+2S), ...) is sinusoidal2675

with frequency ν = Nµ/2π. Successive particle positions (u(s), u′(s)) in phase space2676

lie on the Courant-Snyder invariant (Eq. 10.9).2677

The wave numbers νx and νy can be adjusted independently in a separated function2678

lattice, by means of two independent quadrupole families. The working point (νx, νy)2679

fully characterizes the first order optical setting of the ring.2680

Off-momentum motion2681

The motion of an off-momentum particle satisfies the inhomogeneous Hill’s hori-2682

zontal differential Eq. 10.6. The chromatic closed orbit2683

xch(s) = Dx(s)
δp

p
(10.13)

is a particular solution of the equation, its periodicity is that of the cell.2684

By contrast with the weak focusing configuration, where the on-momentum closed2685

orbit and chromatic closed orbits are parallel (Eq. 9.26: Dx=constant, independent of2686

s), chromatic closed orbits in a strong focusing optical structure are distorted, their2687

excursion depends on the distribution along the cell of (i) the dispersive elements2688

which are the dipoles, and (ii) the focusing.2689
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The horizontal motion of an off-momentum particle is a superposition of the par-2690

ticular solution (Eq. 10.13) and of the betatron motion, solution of the homogeneous2691

Hill’s equation (Eq. 9.22 with δp/p = 0), namely2692

x(s) = xβ(s) + xch(s) =
√
βx(s)

εx

π
cos

(∫
ds

βx
+ ϕ

)
+ Dx(s)

∆p

p0
(10.14)

whereas the vertical motion is unchanged (Eq. 10.12 taken for u(s) ≡ y(s)).2693

10.2.3 Resonances. Resonant Extraction2694

Consider the excitation of transverse beam motion by a generator of frequency Ω2695

located at some azimuth along the ring [16]. The action of the excitation S × sinΩt2696

on the oscillating motion u(t) can be written under the form2697

d2u

dt2
+ ω2u = S sinΩt (10.15)

The betatron motion is assumed harmonic for simplicity, case for instance of weak2698

focusing. Take S constant, the solution (superposition of the solution of the ho-2699

mogeneous differential equation and of a particular solution of the inhomogeneous2700

differential equation) writes2701

u(t) = U cos(ωt + ϕ) + S

ω2 −Ω2
sinΩt (10.16)

If betatron motion and excitation are in synchronism, i.e. on the resonance, ω = Ω,
a particular solution of Eq. 10.15 is

ur (t) = − S t

2Ω
cosΩt

t

u
r
(t)

|St/2Ω|

the amplitude of the oscillatory motion grows rapidely with time, at a rate |St/2Ω|.2702

Assume S periodic instead, take its Fourier expansion S(t) = ∑∞
p=0 ap cos(pω′t +

ϕp), the equation of motion thus writes

d2u

dt2
+ ω2u =

∞∑

p=0

ap cos(pω′t + ϕp) sinΩt =



10.2 Basic Concepts and Formulæ 119

∞∑

p=0

ap

2

[
sin[(Ω − pω′)t + ϕp] + sin[(Ω + pω′)t + ϕp]

]

Resonance may occur at oscillator frequencies ω = Ω ± pω′, their strength depends2703

on the amplitude ap of the excitation harmonics. If the generator is located at one2704

point in the ring, it excites all harmonics.2705

Sextupole and octupole resonances2706

The horizontal motion in the presence of a sextupole component (By(θ)|y=0 = S(θ)x2,2707

see Sextupole, above) as part of the ring optical lattice satisfies2708

d2x

dθ2
+ ν2

x x = S(θ)x2 (10.17)

Assume weak perturbation of the motion, so that x(θ) ≈ x̂ cos(νxθ + ϕ); the per-
turbation S(θ) is 2π-periodic thus substitute its Fourier series expansion S(θ) =∑∞

p=0 ap cos(pω′θ + ϕp) in the differential equation; develop to get

d2x

dθ2
+ ν2

x x =
x̂2

2

∞∑

p=0

ap

[
cos(pθ + ϕp) +

cos[(p − 2νx)θ + ϕp − 2ϕ] + cos[(p + 2νx)θ + ϕp + 2ϕ]
]

Thus resonance may occur at betatron frequency families νx = ±p, νx = ±(p− 2νx),
and νx = ±(p + 2νx), i.e., [

νx = integer
3νx = integer

In the case of a single sextupole in the ring, all the harmonics p are excited with the2709

same amplitude ap .2710

An octupole perturbation introduces a field component By(θ)|y=0 = O(θ)x3 (see
Octupole, above) in the optical lattice. In a similar way, assume weak perturbation
so that x(θ) ≈ x̂ cos(νxθ + ϕ); to O(θ) substitute its Fourier expansion; this yields



νx = integer
2νx = integer
4νx = integer

Resonances in a general manner occur at betatron frequencies satisfying

mνx + nνy = integer

with the property that
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εx

m
−
εy

n
= constant, an invariant of the motion

with the following consequences:2711

- if m and n have opposite signs the resonance causes energy exchange betwen the2712

horizontal and vertical motions: εx
|m | +

εy
|n | = constant, an increase of εx correlates2713

with a decrease of εy and vice-versa; in the presence of linear coupling for instance,2714

νx − νy = integer, εx + εy = constant; an increase in motion amplitude anyway may2715

cause particle loss, an issue in cyclotrons with the Walkinshaw resonance νx = 2νy2716

which causes vertical beam loss upon increase of εy;2717

- if m and n have the same sign the resonance induces motion instabilty: εx
m
− εy

n
=2718

constant, εx and εy may both increase with no limit.2719

Resonant Extraction2720

10.2.4 Synchrotron Motion2721

Paticle motion in the longitudinal phase space (phase,momentum) is determined2722

by the lattice and by the acceleration parameters. The synchrotron acceleration2723

technique has been discussed in Sect. 9.2.2, outcomes are leaned on, here.2724

Acceleration parameters include RF voltage V̂ , frequency frf = ωrf/2π, *******2725

Transition γtr is a property of the lattice and determines the synchronous phase2726

region, [0, π/2] or [π/2, π].2727

Synchrotron angular frequency

Ωs = (ω2
rev |η |hRFeV̂ cos φs / 2πEs)1/2

with η = 1/γ2 − α the phase slip factor (Eq. 9.33), hRF the RF harmonic, ωrev =2728

2π/Trev the revolution angular frequency, V̂ the RF peak voltage, φs the synchronous2729

phase.2730

The bucket height, “momentum acceptance”, satisfies2731

±∆p

p
= ± 1

β

√
qV̂

πhηEs

[−(π − 2ϕs) sin ϕs + 2 cos ϕs] (10.18)

α =
∆C
C

/
∆p

p0
≡ ∆R

R

/
∆p

p0
(10.19)

The maximum extent in phase for small amplitude oscillations satisfies2732

±∆ϕmax =
hηEs

psRsΩs

× max

(
∆E

Es

)
(10.20)

****** separatrix **********2733
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The motion of a particle with enegy offset δE = E − Es satisfies the longitudinal2734

invariants2735

ǫl =
αEs

2Ωs

[(
δE

Es

)2

+

1

Ω
2
s

(
d

dt

δE

Es

)2
]

(10.21)

2736

(δ̂E)2 = (δE)2 + 1

Ω
2
s

(
dδE

dt

)2

(10.22)

Introducing the squared rms relative synchrotron amplitude σ2
δ̂E/E

≡ (δ̂E/Es)2 this2737

yields in addition2738

ǫl =
αEs

2Ωs

σ2
δ̂E/E (10.23)

10.2.5 Radiative Energy Loss2739

check what was said in betatron chapter ...2740

A particle of rest mass m0 and charge e travelling in a magnetic field is subject2741

to stochastic photon emission, which causes energy loss [19]. The phenomenon2742

involves two random processes:2743

- the probability of photon emission over a trajectory arc δs, a Poisson law,2744

p(k) = Λ
k

k!
e−Λ with Λ =< k >=< k2 > (10.24)

wherein k is the number of photons emitted over δs, Λ = 5er0

2~
√

3
Bρ δs

ρ
is its average2745

value, r0 = e2/ 4πǫ0m0c2 is the classical radius of the particle, ǫ0 = 1 / 36π109, ~ is2746

the Plank constant,2747

- the energy ǫ of the photon(s), following the probability law2748

P
(
ǫ

ǫc

)
=

3

5π

∫ ǫ/ǫc

0

dǫ

ǫc

∫ ∞

ǫ/ǫc
K5/3(x)dx (10.25)

with K5/3 the modified Bessel function, γ = E/E0 with E0 = m0c2 the rest energy,2749

and ǫc the critical energy of the radiation,2750

ǫc =
3~γ3c

2ρ
(10.26)

The average energy loss over δs is, assuming ultra-relativistic particles: β = v/c ≈ 1,2751

δE =
2

3
r0E0γ

4 δs

ρ2
=

2

3
r0ecγ3B

δs

ρ
≈ 1.88 10−15 γ3 δs

ρ2

︸                  ︷︷                  ︸
for electrons

(10.27)
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The energy spread resulting from the stochastic emission is2752

σδE/E =

√
110

√
3~c / πǫ0

24E0/e
γ5/2

√
δs

ρ3/2 ≈ 3.80 10−14 γ5/2
√
δs

ρ
︸                       ︷︷                       ︸

for electrons

(10.28)

In a storage ring the RF system restores on average the energy lost by SR. Usefull2753

formulas are given in Tab. 10.1, in particular, assuming a flat ring the partition2754

of energy between radial and longitudinal motions is determined by the partition2755

numbers2756

Jx = 1 − D, Jy = 1, Jl = 2 +D, with D = Dx(1 − 2n)/ρ3

ρ2
(10.29)

where (∗) denotes an average over the ring circumference.

Table 10.1 Radiation parameters(a), energy loss and equilibrium quantities at the synchronous
energy, Es , in an isomagnetic ring

Critical photon energy, ǫc keV
3~γ3c

2ρ

Average photon energy, ǫ keV 8
15

√
3
ǫc

rms energy spread,
√
(ǫ − ǫ )2 keV

√
211

15
√

3
ǫc

Energy loss, Us MeV / turn Cγ
E4
s
ρ

Nb. of average photons /turn/particle Us/ǫ
Longitudinal:

equil. emittance, εl,eq µeV.s αEs

Ωs

Cqγ
2

Jl ρ

rms energy spread, σδE/E
1√
2
σ

δ̂E/E =

√
Cq

Jlρ
γ

rms bunch length, σl mm αc
Ωs

σ δE
E

Radial:

equil. emittance, εx,eq nm =

Cqγ
2

Jxρ
H̄

rms width, σx (s)(b) m

(
βx (s)εx,eq + D2

x (s)σ2
δE
E

)1/2

Damping times, τx,y, l ms TrevEs

UsJx,y, l

(a) Units are, c: m/s; ρ: m; Es : GeV

Cγ = 4π
3

r0

(m0c
2)3 (= 8.846276 10−5 m/GeV3 for electrons).

Cq =
55

32
√

3
~

m0c
(= 3.8319386 × 10−13 m for electrons).

(b) With εx,eq , β(s) and dispersion Dx (s) in meter.
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Damping of accelerated motion2757

In an accelerator (a light source injector for instance), the RF voltage increases2758

during acceleration in order to compensate the increasing energy loss. To first order2759

in the invariant εu (with u standing for x or y) transverse damping in the presence2760

of acceleration satisfies [?]2761

dεu

dt
= − 2

τu(t)
εu + Cu(t) −

1

p

dp

dt
εu , where τ−1

u = Ju
P

2E
,




Cx = H ÛN<ǫ2>
E2

Cy =
βy

2γ2

ÛN<ǫ2>
E2

(10.30)
Longitudinal damping satisfies2762

d(δ̂E)2
dt

= −2(δ̂E)2
τl(t)

+ ( ÛN
〈
ǫ2〉)(t) + (δ̂E)2

2E

dEs

dt
with τ−1

l = Jl
Us

2Es

(10.31)

******** Figures ??, ?? display the evolution of horizontal and vertical emittance2763

with time, respectively2764

ǫx(t) = ǫx,0
(
et/ |τx | − 1

)
, ǫy(t) = ǫy,i e−t/τy (10.32)

with ǫx,0 a constant and ǫy,i an initial value.2765

10.2.6 Depolarizing esonances2766

By contrast with weak focusing optics where depolarizing resonances are weak2767

because horizontal field components are weak (Sect. 9.2.3), the use of stong fo-2768

cusing field gradients in the combined function magnets and/or focusing lenses of2769

strong focusing optics results in strong radial field components and therefore strong2770

depolarizing resonances.2771

Spin precession and resonant spin motion in the magnetic components of a cyclic2772

accelerator have been introduced in Sects. 4.2.5, 5.2.5. The general conditions for2773

depolarizing resonance to occur have been introduced in Sect. 9.2.3. In a strong2774

focusing synchrotron they assentially result from the radial field components in the2775

focusing magnets and their strength is determined by the lattice optics, as follows.2776

Strength of imperfection resonances2777
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Imperfection, or integer, depolarizing resonances are driven by a non-vanishing
vertical closed orbit yco(θ) which causes spins to experience periodic radial fields in
focusing magnets, dipoles in combined function lattices and quadrupoles in separated
function lattices, namely,

Bx(θ) = G y(θ) = K(θ) × B0ρ0 × yco(θ)

with θ the orbital angle, B0ρ0 the lattice rigidity and yco(θ) the closed orbit excursion.
Resonance occurs if the spin undergoes an integer number of precessions over a turn
(it then undergoes 1-turn-periodic torques), so that spin tilts at field perturbations
along the closed orbit add up coherently. Thus resonances occur at integer values

Gγn = n

A Fourier development of these perturbative fields yields the strength of the Gγn
harmonic [21, Sect. 2.3.5.1]

ǫ
imp
n = (1 + Gγ) R

2π

∮
K(θ) yco(θ) e− jGγ(θ − α) e jnθ dθ

In the thin-lens approximation this simplifies into a series over the quadrupole fields,2778

ǫ
imp
n =

1 + Gγn

2π

∑

Qpoles

[cos Gγn αi + sin Gγn αi] (KL)i yco(θi) (10.33)

with θi the quadrupole location, (KL)i the integrated strength (slice the dipoles as2779

necessary in an AG lattice for this series to converge) and αi the cumulated orbit2780

deviation.2781

Orbit harmonics near the betatron tune (n = Gγn ≈ νy) excite strong resonances.2782

Imperfection resonance strength is further amplified in P-superperiodic rings, with2783

m-cell superperiods, if the betatron tune νy ≈ integer × m × P [22, Chap.3-I].2784

Strength of imperfection resonances2785

Intrinsic depolarizing resonances are driven by betatron motion, which causes spins2786

to experience strong radial field components in quadrupoles, namely2787

Bx(θ) = G y(θ) = K(θ) × B0ρ0 × yβ(θ) (10.34)

The effect of resonances on spin depends upon betatron amplitude and phase, their
effect on beam polarization depends on beam emittance. Longitudinal fields from
dipole ends are usually weak by comparison and ignored. The location of intrinsic
resonances depends on betatron tune, it is given in an M-periodic structure by

Gγn = nM ± νy
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10.3 Exercises2788

In complement to the present exercises, an extensive tutorial on depolarizing res-2789

onances in a strong focusing synchrotron, considering poton, helion, or electron2790

beams, using the lattice of the AGS Booster at BNL, can be found in Ref. [21,2791

Chap. 14,"Spin Dynamics Tutorial: Numerical Simulations”]. The simulaitons in-2792

clude tune-jump quadrupoles, solenoid, snakes, electron beam polaization life time2793

and spin rotators.2794

10.1 Construct SATURNE II synchrotron. Spin Dynamics With Snakes2795

Solution: page 3612796

Over the years 1978-1997 the 3 GeV synchrotron SATURNE II at Saclay2797

(Fig. 10.7) delivered ion beams up to 1.1 GeV/nucleon, including polarized proton,2798

deuteron and 6Li beams, for intermediate energy nuclear physics research, including2799

meson production [17, 18]. The separated function synchrotron was designed ab2800

initio for the acceleration of polarized beams [20], and the first strong focusing syn-2801

chrotron to do so - ZGS, first to accelerate polarized beams, protons and deuterons,2802

was a weak focusing synchrotron (see Chap. 9).2803

SATUNE II is a FODO lattice with missing dipole. Its parameters are given in2804

Tab. 10.2.2805

SPES IV

Fig. 10.7 SATURNE II synchrotron and its experimental areas [23], including mass spectrometers
SPES I to SPES IV, a typical 1960-80s nuclear physics accelerator facility. Polarized ion sources
are on the top left, followed by a 20 MeV linac

(a) Simulate the main dipole using BEND, include fringe fields assumingλ = 8 cm
extent and the following Enge coefficient values (Eq. 15.13, Sect. 15.2.6):
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Table 10.2 Parameters of SATURNE II separated function FODO lattice. ρ0 denotes the reference
bending radius in the main dipole; the reference orbit, wave numbers, etc., are taken along that
radius

Orbit length, C m 105.5556
Average radius, R = C/2π m 16.8
Length of long straight section m
Wave numbers, νx ; νy 3.64; 3.60
Chromaticities, ξx ; ξy negative, a few units
Momentum compaction α 0.015
Injection energy (proton) MeV 20
Top energy GeV 3
ÛB T/s 4.2

Synchronous energy gain keV/turn 1.160
RF harmonic 2
Dipole:
- bend angle, α deg π/8
- magnetic length, ρα m 2.489
- magnetic radius, ρ m 6.3381
- wedge angle, ε deg 2.45
Quadrupole:
- gradient T/m 0.5 - 10.56
- magnetic length F/D m 0.46723 / 0.486273

C0 = 0.2401, C1 = 1.8639, C2 = −0.5572, C3 = 0.3904, C4 = C5 = 0

Produce a graph of the field across the dipole along the reference orbit, in the median2806

pnae and at 5 cm vertical distance. Produce the transport matrix, check against theory.2807

Compare with the matrix of the hard edge model.2808

Simulate the F and D quadrupoles, using respectively QUADRUPOLE and MUL-2809

TIPOL. Compare matrices with theory.2810

Construct the cell. Produce machine parameters (tunes, chromacities), check2811

against data, Tab. 10.2.2812

Construct the 4-cell ring. Produce a graph of the optical functions.2813

(b) Accelerate a bunch with Gaussian densities comprised of a few tens of particles2814

(it can be defined using MCOBJET), from injection to top energy; use harmonic 32815

RF frequency, and (unrealistic, for a reduced number of turns) peak RF voltage2816

V̂ = 1 MV.2817

Produce a graph of the three phase spaces. Check the transverse betatron damping.2818

(c) Simulate multiturn injection in the ring. Take the injection point at the center2819

of a long straight section.2820

(d) Simulate resonant extraction from the ring, on νx = 11/3. Take the extraction2821

point at the center of a long straight section.2822

10.2 Depolarizing Resonances In SATURNE II2823

The input data file to simulate the ring is given in Tab. 17.73, an outcome of2824

exercise 10.1.2825

(a) Calculate the strength of the intrinsic depolarizing resonances (systematic and2826

non-systematic) over 0.5-3ǴeV, using Eq. ??.2827
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(b) Ggamma=7-νy was found to be a potentially harmful depolarizing resonance2828

- unexpectedly as this is not a systematic resonance. Produce a crossing of that2829

resonance, for a 100-particle bunch. Get its strength from this simulation, compare2830

with (a).2831

(c) Multiple resonance xing - ref to Phys. Rev. article ***2832

10.3 Cornell electron RCS. Radiative Energy Loss2833

Short intro .... energy loss by synchrotron radiation [24]2834

Tab.: RCS parameter list2835

(a) Cornell RCS parameters are given in Tab. ??. Construct the ring, produce its2836

optical parameters. Poduce a graph of the optical functions.2837

(b) Raytrace a few tens of particles over 3000 turns in Cornell RCS, from ***2838

to *** GeV. Assume emittances epsilx=, epsily=, Gaussian densities, initial rms2839

δp/p = 10−4. Produce a graph of the three phase spaces. produce graphs of horizontal2840

and vertical transverse excursions versus turn number.2841

(c) Re-do (b) with synchrotron radiation energy loss.2842

(d) Produce the average beam polarization obtained in (c).2843

(c) Multiple resonance crossing.2844
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