Homework for Lecture 14, due Apr. 72014

1. Calculate the relative relation between $\Delta V / V, \Delta P / P$ and $\Delta E / E$. Note V is the velocity of the particle, P is the amplitude of the momentum and E is the energy of the particle.
Answer: From the relation $E=\sqrt{m^{2} c^{4}+P^{2} c^{2}}$, we have $d E=c^{2} P d P / E$. Divide E^{2} on both side we have $d E / E=(c P / E)^{2} d P / P$. Note that $\beta=$ $c P / E$, we get $\frac{d E}{E}=\frac{\beta^{2} d P}{P}$. Then we start from the relation $\beta=c P / E$, the relative change is $d \beta / \beta=d P / P-d E / E=\left(1-\beta^{2}\right) d P / P=\left(1 / \gamma^{2}\right)(d P / P)$
2. In class, we transform the longitudinal map

$$
\begin{aligned}
\delta_{n+1}-\delta_{n} & =\frac{e V}{\beta^{2} E_{0}}\left(\sin \phi_{n}-\sin \phi_{s}\right) \\
\phi_{n+1}-\phi_{n} & =2 \pi h \eta \delta_{n+1}
\end{aligned}
$$

to longitudinal effective Hamiltonian. Actually we can also establish the one turn matrix for longitudinal motion if assume $\phi_{n}=\phi_{s}+\Delta_{n}$, where $\left|\Delta_{n}\right| \ll 1$. Find this matrix for $\left(\delta_{n+1}, \Delta_{n+1}\right)$ from $\left(\delta_{n}, \Delta_{n}\right)$. Find the tune for this map, by assuming the tune is very close to zero, which is true in ring accelerator.
Answer: The matrix can be built as:

$$
\begin{aligned}
\binom{\delta_{n+1}}{\phi_{n+1}} & =\left(\begin{array}{cc}
1 & 0 \\
2 \pi h \eta & 1
\end{array}\right)\binom{\delta_{n+1}}{\phi_{n}} \\
& =\left(\begin{array}{cc}
1 & 0 \\
2 \pi h \eta & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{e V \cos \left(\phi_{s}\right)}{\beta^{2} E_{0}} \\
0 & 1
\end{array}\right)\binom{\delta_{n}}{\phi_{n}} \\
& =\left(\begin{array}{cc}
1 & \frac{e V \cos \left(\phi_{s}\right)}{\beta^{2} E_{0}} \\
2 \pi h \eta & 1+\frac{2 \pi e V h \eta \cos \left(\phi_{s}\right)}{\beta^{2} E_{0}}
\end{array}\right)\binom{\delta_{n}}{\phi_{n}}
\end{aligned}
$$

The trace of the one-turn longitudinal matrix is $\operatorname{Tr}=2+2 \pi e V \eta \cos \left(\phi_{s}\right) / \beta^{2} E_{0}$. Compare with the transverse case the one turn map is

$$
\left(\begin{array}{cc}
\cos \psi+\alpha \sin \psi & \beta \sin \psi \\
-\gamma \sin \psi & \cos \psi-\alpha \sin \psi
\end{array}\right)
$$

where $\psi=2 \pi \nu_{s}$. The longitudinal phase advance can be found from the relation $2 \cos \psi=T r=2+2 \pi e V \eta \cos \left(\phi_{s}\right) / \beta^{2} E_{0}$. Again we know that only if $\eta \cos \phi_{s}<0$, we can find tune, i.e. the motion is stable. Taylor expend $\cos \psi \sim 1-\psi^{2} / 2$, we can easily find

$$
\nu_{s}=\sqrt{\frac{-e V h \eta \cos \phi_{s}}{2 \pi \beta^{2} E_{0}}}
$$

also we can find 'beta function' for longitudinal motion.

$$
\begin{aligned}
\beta \sin \psi & =\frac{e V \cos \phi_{s}}{\beta^{2} E_{0}} \\
\beta & =\sqrt{\frac{-e V \cos \phi_{s}}{2 \pi h \eta \beta^{2} E_{0}}}
\end{aligned}
$$

The ellipse of phase space is near-up-right one ($\alpha \sim \nu_{s}$, small).
3. For the example in class, find the synchrotron tune for both 100 GeV case and 15 GeV proton ring. The relative parameter is the cavity has 5 MV voltage, 360 harmonic. Compaction factor $\alpha_{c}=0.002$. The RF phase is zero or π. How does the number change if the same ring is for 3 GeV electron beam.

Answer: Find the gamma then beta of the the particle with the mass, proton mass is 938 MeV and electron mass is 0.511 MeV , then plug in the number to find ν_{s}.

