Homework 2. PHY 564 September 2, 2015

Due September 9, 2015

Problem 1. 10 points Motion of non-radiating charged particle in constant uniform magnetic field is a well known spiral:

$$
\begin{aligned}
& \frac{d \vec{p}}{d t}=\frac{e}{c}[\vec{v} \times \vec{H}]=\frac{e}{c} H\left[\hat{e}_{x} v_{y}-\hat{e}_{y} v_{x}\right] ; \vec{H}=\hat{e}_{z} H \\
& \mathrm{E}=c \sqrt{m^{2} c^{2}+\vec{p}^{2}}=\text { conts } ; \gamma=\text { const } ; v=\text { const } ; \\
& p_{z}=\text { const } ; z=v_{o z} t+z_{o} ; \\
& p_{x}^{2}+p_{y}^{2}=\text { const } ; p_{x}+i p_{y}=p_{\perp} e^{i \varphi(t)}=m \gamma v_{\perp} e^{i \varphi(t)}
\end{aligned}
$$

simple substitution gives:

$$
\begin{aligned}
& m \gamma v_{\perp} \frac{d e^{i \varphi(t)}}{d t}=\frac{e}{c}[\vec{v} \times \vec{H}]=-i \frac{e}{c} H v_{\perp} e^{i \varphi(t)} \\
& r_{\perp}=x+i y=i \omega m \gamma v_{\perp} \frac{d e^{i \varphi(t)}}{d t} \\
& \varphi(t)=\omega t+\varphi_{o} ; \omega=-\frac{e H}{m \gamma c}
\end{aligned}
$$

and trajectory: $z=v_{o z} t+z_{o} ; x+i y=v_{\perp} / \omega \cdot e^{i \omega t}$. Do not forget to apply Re or Im to all necessary formulae. Use analytical extension of the Lorentz transformation to complex values by going into a reference frame with x-velocity going approaching infinity $\beta \Rightarrow \infty ; \chi \rightarrow 0 ; \chi \beta \rightarrow 1$. Show that transverse electric field becomes a magnetic field (with an imaginary value) and visa versa. Follow this path and transfer 4-coordinates to that frame. Use analytical extension of exp, sin, cos to complex values and transform the solution above in that for motion in constant magnetic field. Compare it with known solution is your favorite EM book .

Problem 2. 4 points

Find maximum energy of the a charged particle (with unit charge e !) which can be circulating in Earth's larges possible storage ring: the one going around Earth equator with radius of $6,384 \mathrm{~km}$.
First, find it for storage ring using average bending magnetic field of a super-conducting magnet with strength of $10 \mathrm{~T}(100 \mathrm{kGs})$.
Second, find it for a very strong DC electric dipole fields of $10 \mathrm{MV} / \mathrm{m}$.
Compare these energies with current largest (27 km in circumference) circular collider, LHC, circulating 6.5 $\mathrm{TeV}\left(1 \mathrm{TeV}=10^{12} \mathrm{eV}\right)$.

Hint: assume that particles move with speed of the light. Check the final result for protons having rest mass of $938.27 \mathrm{MeV} / \mathrm{c}^{2}$

