HW 1 (3 points):

Consider an electron storage ring at an energy of 5 GeV , a circulating current of 200 mA and a bending radius of $\rho=7$ meters. Calculate the energy loss per turn, the critical photon energy, and the total synchrotron radiation power.

HW 2 (2 points): Make a short argument about why the trajectory of a charged particle can not intersect with light cone more than once (see slide \#9 from the lecture 13)

HW 3 (2 points):

As shown in slide \#17, the angular distribution of radiation power is given by

$$
\frac{d P\left(t_{r}\right)}{d \Omega}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{4 \pi c} \frac{\dot{\beta}^{2}}{(1-\beta \cos)^{3}}\left[1-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\gamma^{2}(1-\beta \cos \theta)^{2}}\right]
$$

Show that for $\gamma^{-4} \ll \theta \ll 1$ and $\gamma \gg 1$, the angular spread of the radiation power is in the order of γ^{-1}.

HW 4 (3 points): For 2.5 GeV storage ring with circulating current of 500 mA and a bending radius of $\rho=9$ meters, consider an undulator with 50 periods and with $K=1$ installed in the straight section. Assume horizontal geometrical emittance of 1 nm rad ($1 \mathrm{e}-9 \mathrm{~m}$ rad), vertical emittance of 20 pm rad ($20 \mathrm{e}-12 \mathrm{~m} . \mathrm{rad}$) at the radiation point $\beta \mathrm{x}=\beta \mathrm{y}=3 \mathrm{~m}$.
(a) Find undulator period that fundamental wavelength will be $0.4 \mathrm{~nm}(4 \AA)$
(b) What will be spectral brightness at the fundamental wavelength?

