
So far, we have investigated the properties of plasma structures in 1D and 
3D. In this section, we want to develop a self-consistent formalism for how a 
driver, i.e. a laser or beam generates the plasma wave and how the plasma 
wave in turn modifies the driver. There are some analogies between a laser 
and particle beam driver and there are some important differences, as we will 
investigate later in the context of linear theory.



We will see that the coupling between the laser and the wake is given by two 
coupled differential equations, which constitute the most important equations 
in short-pulse laser plasma interactions:  













We will start from the relativistic cold fluid plasma equations to derive these 
equations and then make approximations to study them in the linear limit.  

















Note that since we are in the cold fluid limit, the “fluid velocity” is the same 
as the velocities of all the particles in the fluid element (since there is no 
thermal spread), so that the total derivative can be interpreted as describing 
the motion of a single particle. 



Now, since the Euler’s equation is the same as the equation of motion of a 
single particle in the E&M field, the equation for canonical momentum can be 
derived in the same way, which gives: 







This equation is consistent with Hamiltonian mechanics, where we know that 
if there is translational invariant in any direction (i.e. where the gradient term 
is zero), then the canonical momentum in that direction is conserved. 
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Since the canonical momentum is not conserved in general, we are going to 
look for another conservation condition for the canonical momentum in 
plasma, and we find that by taking the curl of the Euler equation













































For example, consider a case where a laser pulse comes through a plasma. 
Before the arrival of the laser pulse, the vorticity is zero, which implies its 
initial time derivatives are zero 











Now, we can use the knowledge of the value of vorticity to get a relationship 
between the magnetic field and the curl of the fluid momentum in the plasma: 
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This is an alternative form for Euler’s equation in an initially unmagnetized 
plasma. 



Note that the time derivative of the fluid momentum is a partial derivative. 
The grad term on the right hand side is the term that allows the laser to put 
radiation pressure on the plasma and is the source term in the fluid view of 
the ponderomotive force. We will see that later in the linear limit, but it is also 
possible to derive that in the nonlinear limit.  



Where do we go from here? There are several ways of proceeding: we can 
for example use these relations to find an expression for the wake function in 
the plasma. But before then, it will be instructive for us to find a single 
equation for the fluid momentum of the plasma. The vorticity then would give 
the coupling between the vector potential of the driver (e.g. laser) and the 
momentum.



Getting a single equation for momentum:

We already know that we are looking for something like a wave response. So, 
we take the time derivative of equation 9 to see if we can get a wave 
equation for the plasma fluid momentum:























Next is relating the magnetic field,   , and     to the momentum. We already 
know from vorticity:
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Now, let’s consider our specific problem: the wake has a component that is 
due to the laser and another that is given by the wake:

































Similarly the transverse field of the laser is larger than that of the wake by the 
inverse of this number. So without going through a rigorous derivation, we 
are making an ordering that the transverse momentum is dominated by the 
force of the laser, while the longitudinal momentum is dominated by the 
wake. With that in mind, we are going to split the momentum equation into 

8 1 32 t

For n use Gauss's Law Euler's eyn

F É E Kj e density
replace using

I
genusity

Euler's eyn

EPI eÉ mo Dre E É F te 2 P moon

Substituting these terms in eyn to results in

IP a Ex P I up Im25.5 00235 me 208 0

PI PIasert P'wake

gÉ th

y

T

j
ÉÉJz FI

y
small PZL AZL EEL

Iz Ko

E É Ezn KE'T
N WI E kl

smallness parameter

We note that for a laser with finite size, 
there are components of the field that 
are in the ‘z’ direction (since           ), 
and they scale roughly by the inverse 
of laser wave number to the plasma 
frequency:



longitudinal and transverse equations and see if we can separate these two 
effects:































Now, we transition to normalized units and a co-moving coordinate 





































Since we are focusing on a short-pulse laser and a wake both of which have 
phase velocities near the speed of light, we use a co-moving coordinates. 
Unlike the first class though, here we use
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Recall that using ‘ct’ in     instead of         introduces an error that is 
proportional to 



Additionally, we make the quasi-static approximation once again, which in 
this case takes the form of





The derivatives in this translation are















Now, using the co-moving coordinate and in the normalized units, the 
equations become  















Recalling that             is an important component of the constant of motion, 
we gather these terms (multiply equation above by -1 first):
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Here, ‘s’ represents the distance that a 
position ‘z’ of a point of constant     
(E.g. the front of laser). Since the co-
moving coordinate travels at the speed 
of light, this is equivalent to ‘ct’, where 
‘t’ is time in the original frame. 
Meanwhile,     is still the distance from 
the front of the laser.  





















This is the equation for the evolution of a fluid element. From the previous 
lectures, we know that the wake potential (                  ) is an important 
quantity from which all the important properties of the wake can be derived. 
We therefore desire to get an equation for the wake potential. We can do so 
using the constant of motion for our fluid element, which starts from rest in a 
field-free region: 
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Substituting Eqn 19 for the proper density in Eqn 16 and substituting for     
and       as above, results in Eqn 18. This is the alternate way of deriving this 
equation.  



Note that Eqn 18 is a fully nonlinear equation for the wake evolution. The          
is primarily provided by the driver, which is why we will leave it here as the 
source term for     . Alternatively,      is primarily due to the wake. In this way, 
Eqn 18 gives us a direct method for coupling the energy of a drive beam to 
the plasma wakefield.  



To simplify the problem, we are going to consider the case of a transversely 
uniform driver, or a wake with a small transverse gradient:

















Eqn 19 describes how a wake is excited by the driver, since, as discussed 
above, the transverse fluid momentum (the       term) is dominated by the 
laser. Therefore, to examine the evolution of the laser, we need to look at the 
equation in the      direction. 
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This equation has contributions from wake and the laser. Since we know that 
the transverse momentum is dominated by the laser, we use our knowledge 
of the laser quantities to further simplify this equation:
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These equations describe how a wake is initiated by the laser, and how the 
laser is in turn modified based on the feedback from the wake. Since we 
made assumptions about the magnitude of various terms, if needed for the 
physics under study, we can go back and add the relevant terms. 



It is possible for us to analytically solve this system of equations in the linear 
limit, i.e. where the quantities are small, 

































Similar to the single particle motion lecture, we define the vector potential of 
the laser in terms of a fast oscillating component multiplied by a slowly 
varying envelope of the laser:
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Substituting the equation for the vector potential, we get an equation for be 
complex envelope of ‘a’











Equation 26 implies that there is a wake response due to the slowly 
oscillating envelope (first term on the RHS) and a wake response due to the 
fast oscillating component (second harmonic term on the RHS). 



One can show that the wake response to the second harmonic term is much 
smaller than the wake response to the slowly varying envelope term (HW 
problem!). Therefore we drop the second term on the RHS to get: 













Note that there are no derivatives with respect to ‘s’ in equation 27. One way 
to think about the coupling between equations 25 and 27 is that equation 27 
can be applied to the value of the laser profile at some particular ‘s’ to find 
the wake. The wake then is used in equation 25 to allow you to propagate 
laser profile in ‘s’. The essence of quasistatic approximation is that the wake 
and the laser evolve on completely different scales, which means the wake 
does not depend on how the laser evolves in ‘s’, but only on the profile of the 
laser at that particular ‘s’.  
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Now that we discussed how lasers generate a wakefield in plasma, we are 
going to discuss how we can extend this discussion to particle beam drivers 
in the context of a more generalized form of linear theory. Understanding of a 
linear theory of beams in plasma is important even for those researching 
laser wakefield acceleration because regardless of the drive, the beam is 
going to be an electron beam. 



We starting by looking at the laser again, and this time, we start from linear 
fluid Maxwell equations: 
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So the plasma density perturbation is driven by the ponderomotive potential 
and by the beam. One can immediately see a difference between a laser and 
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the particle beam driver. For the particle beam driver the wakefield is driven 
by the value of the beam density at that location. The laser however does not 
have fields that extend outside of it and so the density is driven by the 
derivative and the gradient of the ponderomotive potential. 



Next, we will look for an equation for  







































So equation 34 allows for the calculation of the density perturbation, and the 
resulting electric field is calculated from equation 35. 

This derivation was first done in a 1D analysis by Tom Katsouleas in a paper 
titled “beam-loading in plasma accelerators”. The next part having to do with 
the analysis of the wake potential was an insight courtesy of Julian 
Schwinger when he was a professor at UCLA!



Now, since we are analyzing the accelerating field, we consider the        
component of equation 35: 
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Now, using the co-moving coordinates as above, we make the quasi-static 
approximation:



















Physically, this means that to the first order, the beam charge density does 
not contribute to the longitudinal electric field for the beam that moves at the 
speed of light. 



























Comparing equations 34 and 39, one can realize that equations 35 can be 
written in co-moving coordinates in terms of the term on the right hand side 
of equation 39. So we define











Equations 39 and 41 represent two coupled equations for lasers and particle 
beams. The beam and the laser create      . Once we know       , we can solve 
for        We can then use       to calculate all the forces on the trailing bunch 
we want to accelerate.  We can also use      to determine the evolution of 
drive laser or particle beams.
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Let’s now go to normalized units and look for a procedure to solve these 
equations. Recall the normalization for        is 

























Since the properties of the wake are determined by     , I am going to 
combine equations 42 and 43 into a single equation for     .



















Equation 44 is linear wakefield theory in one equation. As an aside, we can 
have a witness laser pulse, where we can analyze the photons comprising 
the laser undergoing acceleration/deceleration depending on the derivative of 
wake potential. We will come back to this in the “nonlinear optics of 
plasmas” lecture.  



To solve this linear equation, we use Green’s function. We also look at the 
case of the laser and electron beam separately. We also note that since this 
is a linear equation, if the particle beam and laser are simultaneously present, 
the total wake will be the linear superposition of the wakes excited by each 
source term. The physical interpretation is that within the confines of linear 
theory, each source is going to generate its own wake response & it doesn’t 
really matter that the wake was already perturbed by another source. This 
fact will give us the framework for the study of beam loading later on. 
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Laser 

In the regions where there is only laser and the beam term drops off, we 
recover eqn 27 by dropping the                  operator from both sides.

 



We use Green’s function again, but now, we let the Green’s function have 
transverse gradients to account for the transverse profile of the laser. From 
Eqn 27/45, it is clear that the transverse gradient of the wake potential will 
follow that of the laser (side there there is no transverse gradient in this 
equation). Therefore, if you want the wake potential to have a certain 
transverse profile (for example to achieve a certain focusing force,                ), 
you will need to have a laser with the same transverse profile. 
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Note that the transverse component of       is directly dictated by the 
transverse profile of the ponderomotive potential as expected.  



Particle Beam

The equations in this case are different, but the same logic will apply

























































Note that while     goes to infinity like the delta function, the physical 
response is obtained through the integration of the Green’s function. So as 
long as the integration gives a physically meaningful response, the behavior 
of Green’s function itself is of little consequence.  



For the wake function then, we get
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Now if the charge density is some complicated function with correlations, 
etc, evaluating Eqn 55 is going to be nontrivial. For practical purposes, we 
are often interested in the peak accelerating field, which occurs near the axis. 
In this case, and assuming that beam charge density is separable,  



















The function R(0) is what distinguishes a beam response from a laser 
response. Consider the following cases for a beam that’s small compared to 
a skin depth:



(a) a flat top profile: 







(b) a Gaussian profile:











It can be observed that the answer is relatively insensitive to the shape of the 
beam. Moreover, the answer is relatively insensitive to beam width & as we 
already know from the single particle lecture, the fields of the drive beam 
scale as charge per unit length. For the Gaussian beam for example 
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So if you take a beam with fixed amount of charge and start making it 
narrower and narrower, the wake is very insensitive to how narrow you make 
it. This was not appreciated at the time of the beam loading paper by 
Katsouleas. 



If we do the full analysis and ask the question of how far beyond the beam 
the effect of R(0) is felt, you will see that the beam wake extends roughly to a 
skin depth, even when the beam is much narrower. Therefore when the beam 
is absorbing wake’s energy, it can do so out to a skin depth. This latter fact 
distinguishes the beam case from the laser, for which the wake exist only 
where the laser is. 



To analyze the first term, we consider again the case of a Gaussian profile 























With these new limits, this integral can be evaluated analytically (HW). The 
electric field can then be calculated as 
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Transformer ratio: transformer ratio is a measure of efficiency of an 
accelerator. It is the peak accelerating field divided by the peak decelerating 
field. The higher the transformer ratio, the faster the energy transfers from the 
drive to trailing bunch. Consider a short (           ) and wide (            ) drive 
bunch. This profile is essentially a delta function in      In this case, the beam 
density is represented by a surface charge density,



Note that for such a function, a laser and particle driver have the same effect 
since the transverse gradients from equation 50 drop out making it the same 
as equation 45, just with the particle beam drive term.  

















Physically, the delta function excites a wake starting from the position of the 
beam. Because of the discontinuity of the wake at the location of the beam, 
the decelerating force felt by the wake is







On the other hand, the accelerating field is the full field of the wake, 









In fact, there is a fundamental theorem that states that for a symmetric beam 
the transformer ratio is limited to less than two (see K. Bane and A. Chao 
1985). Therefore to achieve a transformer ratio higher than 2, one has to use 
an asymmetric bunch: 
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Nonlinear plasma wake excitation

In general the case of nonlinear wake excitation is quite complex and simple 
analytical formulas are not as extensively developed. In the case of the 
blowout regime, the properties of the wake function are related to the 
trajectory of the innermost electron. 



Recall,

































The addition of a driver (in particular a particle beam driver) modifies the 
source terms inside the wakefield in the following way
































r a

s HB a for rn

year Yes I

ayy
guI

Eqn 18 a 20 in the 3D blowout no e driver
wakefields notes

From the transverse component of the equation of motion for
the innermost é in the case of rb 1 we got Ega 39
in the 3D blowoutwakefields notes

rbdig t 2 dfg t l o

i

f to end I nb in normalized units

Iz O Cnbc Nb

D Do 5 It 715 Lnr

Az Az s pig inn

Are I dig as before

Here a 5 ny ri 5 2ter dr where a thightly focused




















































































beam is assumed such that we are mostly interested in

fields outside of the beam r tb

Following the same procedure as the 3D blowout wakefield notes

one can show that eqn za now turns to

5 3 2 Eg 1 4311 600

Given a profile for 415 one can in theory calculate

Igls o once rb is found one can determine 4

thereforethe properties of thewakefield using theequations on

previous pg However in a paper in 2021 Golovonov et al

realized that at rb o the RHS a forcing the

substitution
4 5 8541

s it turns out the parabolic substitution is the only one

eliminating divergence of second derivative w o introducingzero

elution into the eyn substituting eyn 61 into 60 we

get
4ft dfs Ig Iz

For this new setof variables the second derivative is finite




















































































Ig f helps cancel the singularity

One thing to note is that the LHS is positive definite

so this eyn is valid for Eg 7515,0 I 7
ryo

In this case where rb log we make the approximation that

the eyn for blowoutradius still applies except that instead

of 415 we use 915 r Cris ster'dr

inital condition then are

rb o o 0150 to

dig o dogs Iso o

Finally comparing the definition of 0g 4 we realize

4 Sir Yes

Ez 28g If


