Class schedule for March 9

- Short lecture on magnets for accelerators.
- Will take a break
- Then, you will be divided into two groups
- Group A will learn about magnets in the experiment (~50 min)
- Group B will continue last week's exercise
- You will switch
- Please email me your project paper (three preferences).
 My email: diktys@bnl.gov

Magnets for particle accelerators

Diktys Stratakis

Brookhaven National Laboratory
Stony Brook University

PHY 542 March 09, 2015

Accelerator simplified schematic

- Three main components: Source, transport, target
- Today we will focus on transport

Beam Transport

Each particle is defined by position and momentum:

$$\vec{x} = (x, p_x, y, p_y, z, p_z)$$

More convenient is to use position and divergence

$$\vec{x} = (x, p_x, y, p_y, z, p_z)$$

$$\vec{x} = (x, x' = \frac{p_x}{p_z}, y, y' = \frac{p_y}{p_z}, z, \frac{\Delta p}{p})$$

 Assuming no coupling the transverse motion can be represented by two dimensional vectors u=(x,x') and

$$V=(y,y')$$

Phase-space

Beam phase-space in a drift

- Observation: Without focusing any beam would spread
- Magnets: Solenoids, quadrupoles, bends
- Why magnetic focusing? Why not electrostatic focusing?

Magnetic lattice

 An array of magnets that is guiding a charged particle beam from A to B using magnets is a transport system or a magnetic lattice

Example: University Maryland Ring (UMER)

Quadrupole

Bend ·

Example: ATF

Quadrupole

Magnetic focusing

- Accelerators rely on magnetic focusing. Can you guess why?
- · Ratio of magnetic and electric forces:

$$F = q(E + v \times B) \longrightarrow \frac{F_M}{F_E} = \frac{vB}{E} \longrightarrow \frac{F_M}{F_E} = 1 \longrightarrow E = vB$$

- Consider the case of high-energy particles $(v \sim c)$
 - B=1 T, the equivalent E-field is E=300 MV/m
- Consider the case for low energy particles (v = 0.01c)
 - For B=1 T, the equivalent E field is E=3 MV/m
- Summary: Magnets are better at high energy!

The good news...

- Many of the concepts of conventional light optics can be carried over to describe accelerator optics
- We can use matrix concepts from light optics, i.e. a particle is a vector (x,x') and a lens is a matrix that

multiplies (manipulates) vector

Again no coupling assumed!

Bending magnets

- A dipole magnet gives us a constant field B
- For a positive particle traveling into the page, the force is to the right

- In an accelerator dipoles are used to bend the beam trajectory
- A useful quantity is the magnet rigidity

$$\frac{d\theta}{dt} = \omega_{c} = \frac{eB}{m} = \frac{eBv}{p_{0}}$$

$$\Rightarrow \theta = \frac{e}{p_{0}} \int_{s_{1}}^{s_{2}} Bdl = \frac{e}{B\rho} \int_{s_{1}}^{s_{2}} Bdl$$

Where, p_0 is the momentum and $B\rho = p_0/e$ is the momentum 'rigidity' of the beam.

Dispersion

Particles with different momentum follow different paths in the magnet

Can cause beam degradation, BUT sometimes is useful.

One example is the ATF mask:

Dispersion Mask at the ATF

Dispersion for beam cooling

- Beam cooling through particle-matter interaction
- Introduce dispersion before entering absorber
- Pass through wedge material to cool the beam

Ye M M Re

Yellow: Bends

Magenta: Absorber

Red: Cavities

Emitance reduces by 5 orders of magnitude!

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 091001 (2013)

Tapered channel for six-dimensional muon cooling towards micron-scale emittances

Diktys Stratakis, Richard C. Fernow, J. Scott Berg, and Robert B. Palmer Brookhaven National Laboratory, Upton, New York 11973, USA (Received 19 June 2013; published 23 September 2013)

Quadrupoles

- Bends are only bending...
- Now we need something to focus the beam

Quadrupoles (cont.)

Magnetic field on ideal quadrupole is: B=1

$$B = B_1 (z\hat{x} + x\hat{z})$$

- Particles aligned on the center of the magnet receive no force from the quadrupole field
- Off-axis the force is pushing inward and is linear

Quadrupoles: Some simple math

 Particles displaced by (x,z) from the center receive a force:

$$\vec{F} = evB_1\hat{s} \times \left(z\hat{x} + x\hat{z}\right) = -evB_1z\hat{z} + evB_1x\hat{x}$$
 the equations of motion become:

$$\frac{1}{v^2} \frac{d^2 x}{dt^2} = \frac{eB_1}{\gamma mv} x, \quad \frac{1}{v^2} \frac{d^2 z}{dt^2} = -\frac{eB_1}{\gamma mv} z$$

$$B = B_1 (z\hat{x} + x\hat{z})$$

Particle Coordinates

- ■Vertical displacement: z
- •Horizontal: x

- Or $\frac{d^2x}{ds^2} = x'' = \kappa x$ and $\frac{d^2z}{ds^2} = -\kappa z$ where $\kappa = \frac{eB_1}{\gamma mv}$

$$\frac{d^2z}{ds^2} = -\kappa z$$

$$\kappa = \frac{eB_1}{\gamma mv}$$

- Recall that orbits can be represented by two dimensional vectors u=(x,x') and v=(z,z')

$$\begin{pmatrix} z \\ z' \end{pmatrix} = \begin{pmatrix} \cosh\sqrt{\kappa}L & \frac{1}{\sqrt{\kappa}}\sinh\sqrt{\kappa}L \\ \sqrt{\kappa}\sinh\sqrt{\kappa}L & \cosh\sqrt{\kappa}L \end{pmatrix} \begin{pmatrix} z_0 \\ z0' \end{pmatrix}$$

Thin lens approximation

Take limit as L→0, while κL remains finite:

$$\begin{pmatrix} \cos(\sqrt{K}L) & \frac{1}{\sqrt{K}}\sin(\sqrt{K}L) \\ -\sqrt{K}\sin(\sqrt{K}L) & \cos(\sqrt{K}L) \end{pmatrix} \to \begin{pmatrix} 1 & 0 \\ -KL & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{F} & 1 \end{pmatrix}$$

 Thus, if the quadrupole is thin enough, particles offset through the quad does not change much, but the slope of trajectory does – acts like a thin lens in geometrical optics!

Change in trajectory:

$$\Delta x' = \frac{x}{f}$$

Quadrupole doublets

- Quadrupoles focus in one plane while defocusing in the other. So, how can this be used to provide net focusing in an accelerator?
- Consider again the optical analogy of two lenses, with focal lengths f1 and f2, separated by a distance d:

A quadrupole double is focusing on both planes!

Quadrupole doublets (cont.)

 Strong focusing by sets of quadrupole doublets with alternating gradient

Beam matching

 Proper matching is a key for maintaining good quality beams!

Solenoids

- A solenoid is a tightly wound helical coil of wire whose diameter is small compared to its length.
- The magnetic field generated in the center, or core, of a current carrying solenoid is essentially uniform, and is directed along the axis of the solenoid.
- Solenoids are preferred at low energies

