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Transverse (Betatron) Motion 
 Linear betatron motion  
 Dispersion function of off momentum particle 
 Simple Lattice design considerations 
      Nonlinearities 



What we learned: 
 
Floquet Theorem 
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The evolution of the betatron amplitude function in a drift space is 
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Passing through a thin-lens quadrupole, the evolution of betatron function is 
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The values of the Courant–Snyder parameters α2, β2, γ2 at s2 are related to α1, β1, γ1 at s1 by 



Courant-Snyder Invariant 

(X,PX) form a normalized phase space coordinates with 
X2+PX

2=2βJ,  here J is called action. 
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The betatron phase space ellipses of a particle with actions J = 10π mm-mrad. 
The btatron parameters are βy = 10m, and αy shown by each curve. The scale for 
the ordinate y is mm, and y′ in mrad. The betatron parameters for each ellipse 
are marked on the graph. All ellipses has the maximum y coordinate at (2βyJ)1/2. 
The maximum anglular coordiante y′ is (2(1 + αy

2 )J/βy)1/2. All ellipses have the 
same phase space area of 2J. 

Example: Ellipses (vertical) with 
different optical parameters 



Courant-Snyder Invariant 

Emittance of a beam 

Given a normalized distribution function ρ(X, X′) with ∫ρ(X, X′)dXdX′ = 1, the 
moments of the beam distribution are 
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Where ςX and ςX’  are the rms beam widths, ςXX’  is the correlation, and r is the 
correlation coefficient. The rms beam emittance is then defined as 
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The rms emittance is invariant in linear transport: 

we find 
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The σ-matrix is defined as 

If the beam distribution function is a function of the Courant-
Snyder invariant, the σ-matrix is given by

or

Thus y†σ−1y is invariant under linear transport systems. An invariant 
beam distribution is



is commonly used to evaluate the beam properties. Expressing the normalized 
Gaussian distribution in the normalized phase space, we obtain 

where <X2> = <PX
2> = ςX

2 = βXεrms with an rms emittance εrms. Transforming (X,PX) 
into the action-angle variables (J, ψ) with 

The Jacobian of the transformation is βX, and the distribution function becomes 

The percentage of particles contained within 
ε=nεrms is 1 − e−n/2 

The maximum phase-space area that particles can survive in an accelerator is 
called the admittance, or the dynamic aperture. The admittance is determined by 
the vacuum chamber size, the kicker aperture, and nonlinear magnetic fields. 

The Gaussian distribution function 
The equilibrium beam distribution in the linearized betatron phase space may be 
any function of the invariant action. However, the Gaussian distribution function 
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Adiabatic damping and the normalized emittance: εn=εβγ 
The Courant–Snyder invariant, derived from the phase-space 
coordinate X, X′, is not invariant when the energy is changed. To obtain 
the Liouville invariant phase-space area, we should use the conjugate 
phase-space coordinates (X, PX) in Hamiltonian. Since pX = pX′ = mcβγX′, 
where m is the particle’s mass, p is its momentum, and βγ is the 
Lorentz relativistic factor, the normalized emittance defined by εn=εβγ 
is invariant. The beam emittance decreases with increasing beam 
momentum, i.e. ε=εn/βγ. This is called adiabatic damping. Since the 
transverse velocity of a particle does not change during acceleration, 
the transverse angle X′ = pX/p becomes smaller at a higher particle 
momentum. Thus the beam emittance ε=εn/βγ decreases with energy. 
The adiabatic damping also applies to beam emittance in proton or 
electron linacs.  

Because of the quantum fluctuation, The beam emittance in electron 
storage rings increases with energy (∼γ2). The corresponding 
normalized emittance is proportional to γ3.  



Some simple examples:

δ

The particle orbit enters and exits a sector dipole magnet perpendicular to the 
dipole edges. If the gradient function of the dipole is zero, i.e. ∂Bz/∂x = 0, the 
transfer matrix is

where θ is the bending angle, ρ is the bending radius, and ℓ is the length of the 
dipole. A sector magnet gives rise to horizontal focusing. A rectangular dipole 
gives a transport matrix:

1. Large colliders are normally made of arcs and insertion regions (IRs), 
where  arcs are made of FODO cells for beam transport, and IRs are used 
for physics experiments. The IR matches all optical functions for special 
properties relevant to physics experiments.

2. Synchrotron radiation facilities are designed to minimize emittance and 
retain a straight section for IDs.

3. We examine the effect of edge angle in beam motion.



CIS: Circumference =17.364 m, Inj KE= 7 MeV, extraction: 240 MeV
Dipole length = 2 m, 90 degree bend, edge angle = 12 deg.

eCIS: No constraint on circumference (C=20m). Use CIS dipoles & cavity
Need Damping wigglers, chicane, electrostatic kickers & septum



Nader Al Harbi  & S.Y. Lee, RSI, 74, 2540 (2003).
epBB /22 πρπ∑ ==!

Ldip=3.0 m, ρ=1.91 m, Edge_angle=8.5°
Circum=28.5 m, Qx=1.68, Qz=0.71, KE_tr=356 MeV



Low energy synchrotrons often rely on the bending radius Kx=1/ρ2 for horizontal 
focusing and edge angles in dipoles for vertical focusing. Find the lattice property 
of the low energy synchrotron described by the following input data file (MAD). 
What is the effects of changing the edge angle and dipole length? Discuss the 
stability limit of the lattice.

TITLE,"CIS BOOSTER (1/5 Cooler), (90degDIP)"
! CIS =1/5 of Cooler circumference =86.82m / 5 =17.364m
! It accelerates protons from 7 MeV to 200 MeV in 1-5 Hz.
LCELL:=4.341 ! cell length 17.364m/4
L1:= 2.0 ! dipole length
L2:=LCELL-L1 ! straight section length
RHO:=1.27324
EANG:=12.*TWOPI/360 ! use rad. for edge angle
ANG := TWOPI/4
OO : DRIFT,L=L2
BD : SBEND,L=L1, ANGLE=ANG, E1=EANG,E2=EANG, K2=0.
SUP: LINE=(BD,OO) ! a superperiod
USE,SUP,SUPER=4
PRINT,#S/E
TWISS,DELTAP=0.0,TAPE
STOP



Betatron motion: Effects of Linear Magnetic field Error 

UU B
BysKy

B
B

xsKx x
y

y
x

'
� �cc

'
 �cc )(   ,)(

� �� �  ,0¦ �� '�'
n

n
nnxy jyxjabBBjB

,   ,

  ,   ,

1010

1010

xaBByaBB

ybBBxbBB

xy

xy

 � 

  

,   , 0000 aBBbBB xy   

),(   ,2

  ,2   ),(
22

2020

20
22

20

yxaBBxyaBB

xybBByxbBB

xy

xy

� � 

 � 

Dipole field error 

Quadrupole field error 
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Effect of dipole field error:  
We consider a single localized dipole error with the kick angle given by θ=∆Bℓ/Bρ. 
Because of the dipole field error, the reference orbit is perturbed! The idea is to 
find a new closed orbit that include the dipole field error. 
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The closed orbit is given by the following condition: 
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Where Φ=2πν, ν is the betatron tune, the parameters α0, β0, and γ0 are values 
of the Courant-Snyder parameters at the kicker location. The solution is 
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We have solved the closed orbit at one point s0. The closed orbit   
of the accelerator can be obtained by making mapping matrix: 
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Note that the closed orbit is described 
by Green’s function. When the betatron 
tune is an integer, the closed orbit 
diverges. Each time, when the particle 
arrives the same location will receive a 
coherent kick and the particle becomes 
unstable. 

How? And Why 



Left, a schematic plot of the closed-orbit perturbation due to an error dipole kick 
when the betatron tune is an integer. Here pX=βXΔX′=βXθ, where θ is the dipole 
kick angle and βX is the betatron amplitude function value at the dipole. Right, a 
schematic plot of the particle trajectory resulting from a dipole kick when the 
betatron tune is a half-integer; here the angular kicks from two consecutive 
orbital revolutions cancel each other. 
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An accelerator with 
circumference 360 m is 
made of 18 FODO cells. The 
horizontal betatron tune of 
the synchrotron is νx=4.8.  If 
one of the 36 dipoles has an 
error of -2 mrad and another 
has error of -1 mrad. 



TLS orbit vs dipole field error:  Lecture note by C.C. Kuo (2002 OCPA Singapore) 


