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Our plan for this course 
• Purpose: The purpose of this course is to introduce methods of hadron beam cooling to 

reduce the phase-space area of beams in charged particle circular accelerators. Beam cooling 
enables higher beam brightness and enhanced performance in many accelerator applications. 
The course is designed for graduate students pursuing accelerator physics as a career, or 
scientists or engineers having an interest in this topic in accelerator science.

• Prerequisites: Classical mechanics, electrodynamics, and applied mathematical methods for 
scientists and engineers, all at entrance graduate level, are required. Familiarity with 
accelerator science at the level of the USPAS course Accelerator Physics (graduate level) or 
Fundamentals of Accelerator Physics and Technology with Simulations and Measurements 
Lab (undergraduate level), or equivalent experience, are also required.

• Instructional Method: This course includes a series of lectures and exercise sessions. 
Homework problems will be assigned daily which will be graded and solutions will be 
reviewed in the exercise sessions the following day. There will be an in-class, open-note final 
exam at the conclusion of the course.

• Credit Requirements: Grades will be evaluated based on the following performances: 50% 
for home-works and class participation, and 50% for final exam.

• Course Content; The course will start with a description of Hamiltonian and non-
Hamiltonian processes in particle accelerators. Examples of beam invariants, cooling 
decrements  and diffusion processes will be discussed. Four cooling methods - classical 
electron cooling, stochastic and optical stochastic cooling,  and coherent electron cooling -
and their applications will be presented in detail. 
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Learning goals
• Upon completion of this course, your are expected to understand the basic principles 

that underline the physics of proton and ion beam cooling in particle accelerators: 

phase-space density and how increases in the phase-space density are considered 

“beam cooling”.

• Several practical examples will be presented: stochastic and optical stochastic cooling, 

electron cooling and coherent electron cooling. 

• Applying knowledge from these examples, you will develop an insight into the 

mechanisms of both beam diffusion and beam cooling. 

• Insight will be gained on future applications to modern accelerators and colliders, 

including potential cooling mechanisms to improve performance in the planned 

Electron-Ion Collider (EIC) project in high energy nuclear physics.

3



January 30, 2023 Lecture 1

Materials
• Main reading material will be notes to this course: 

http://case.physics.stonybrook.edu/index.php/USPAS_spring_2023

Additional reading suggestions:

• Accelerator Physics - fourth edition by S.Y. Lee (World Scientific 2019)

• Handbook of Accelerator Physics and Engineering - second edition by Alexander W. 
Chao and Maury Tigner (World Scientific 2013) 

• Fundamentals of Accelerator Physics, 
http://case.physics.stonybrook.edu/index.php/PHY554_Fall_2021

• Fall: PHY 564: Advanced Accelerator Physics, 
http://case.physics.stonybrook.edu/index.php/PHY564_fall_2022
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The Rules
• Home works will be posed that the course website together with the rest of course materials 

http://case.physics.stonybrook.edu/index.php/USPAS_spring_2023
• You may collaborate with your classmates on the homework's if you are contributing to the 

solution. You must personally write up the solution of all problems. It would be appropriate to 
acknowledge your collaborators – it will not affect your grades.

• We will greatly appreciate your home-works being readable. Few explanatory words between
equations will save us a lot of time while checking and grading your home-works.
Nevertheless, your writing style will not affect your grades.

• You may (and are encouraged to) use the library and all available resources to help solve the
problems. Use of Mathematica, other software tools and spreadsheets are encouraged. Cite
your source, if you found the solution somewhere.

• You have return HWs before class starts next day after assignment is given. After that
solutions will be posted at the course webstite.

• We will hold Q&A session at 4:30 pm related to HWs
• In addition, we will have Recitation/Discussion session starring at 7:30 pm
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Why is beam cooling needed?
• Beam cooling is referred to processes of reducing 6D 

phase space occupied by beam’s particles, i.e. increasing 
beam brightness 

• Beam brightness can deteriorate because instabilities,  
intra-beam scattering (IBS), mismatch in transport 
systems, noise in power supplies and RF, scattering on 
residual gas, quantum fluctuation of radiation….

• Cooling has multiple applications including:
Increase in collider luminosity (i.e. productivity)

𝐿 = 𝑓!
"!""
#$%#%$

ℎ(𝜎&/𝛽',)∗ ); 𝜎',);   𝜎!,# ≡ 𝜎$!,#% + 𝜎%!,#% ; 𝜎!,# = 𝛽!,#∗ 𝜀!,#∗

Reduction of beam seizes, bunch duration, beam’s angular and 
energy spreads 
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Hamiltonian systems

7

We do not have time to follow-up every step of the Hamiltonian or Canonical Method – I recommend 
you either to refresh it either from flipping through one of your favorite Classical mechanics and E&M 
books or look through Lectures 1&2 of our Advanced Accelerator Physics course at CASE website [1]. 
Here we will have a very brief rehash of the key features specific for Hamiltonian systems, described by it 
Hamiltonian as a function of n coordinates and n canonical momenta and independent variable (in this 
case, t): 

.  (M.1.1) 

It is important to note that in general the canonical momenta are not equal to corresponding mechanical 
momenta and using specific number n=1.2.3… does not make equations simpler. Evolution of the system 
in time is described by Hamilton's equations of motion: 

      (M1.2) 

with symplectic structure of alternating ± signs for the partial derivatives. This symplectic structure is 
very important and results in large number of invariants of motion and analytical solvability of many 
problems: Poincare invariants, Liouville theorem , action and phase variables, expelicit expression for 
inverse matrices, etc, etc, etc… In other words, it is hard to overestimate importance of Hamiltonian 
method. There is important general theorem for Hamiltonian system by Emmy Noether : Any one-
parameter group of dimorphisms operating in a phase space (  for Lagrangian (  for 
Hamiltonian) and preserving the Lagrangian/Hamiltonian function equivalent to existence of the (first 
order) integral of motion.  
[1] http://case.physics.stonybrook.edu/images/4/4c/PHY564_Lectures_1%262_compressed.pdf . 
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One of the well-known consequences of Neother’s theorem is energy conservation for time independent 
system, which is result of symplectic   

 

i.e. energy is preserved when . 

Hamiltonian method gives us very important tool – the general change of variables: , 

called Canonical transformations. Generating functions on any combination of old coordinates or old 
momenta with new coordinates of new momenta are possible, totaling 4= 2 x 2 combinations: 

 (M.1.3) 

which is an important tool in analysis.  
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Hamiltonian systems… continued
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Canonical transformation preserve phase space volume by the system: 

;     (M.1.5) 

which relatively easy to prove for  

  

that non-trivial part Jacobian in the nominator and has identical terms in the 

denominator Jacobian in , i.e. Jacobians are transpose of each other. Hence, there 

determinates are equal. The same method can be used for all four form of the Canonical 
transformation – in next lecture we will find even more elegant prove using symplectic matricies. 
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Hamiltonian systems… continued
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Hamiltonian method is result of the most general physics principle: the least action principle [1] 
with action integral taken along the system trajectory from point A to point B in the phases space 
(q, P): 

;     (M.1.5) 

The most non-trivial finding from the Hamiltonian method is that the motion of a system, i.e., the 
evolution of coordinates and momenta also entails a Canonical transformation:  

, 
with generation function being the action integral along a real trajectory: 

 

Hence, this is a prove that phase space occupied by Hamiltonian system is one of invariants of 
motion: 

.     (M.1.6) 

We will learn about others invariants later today. 
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Hamiltonian systems… continued
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Relativistic particles in EM field
In accelerator physics we are mostly dealing with relativistic charged particles propagating in 
electro-magnetic (EM) field created by accelerator systems. Particles are described by position in 
space  

 

and velocity, mechanical momentum and energy: 

 

The EM field is fully described by its 4-potential and its components of electric and magnetic 
field: 

   (M.1.7) 

with 4-poternial flexibility of selecting gauge: 

      

which does not change electric and magnetic fields.  
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Relativistic particles in EM field
But choice of the EM gauge changes expressions for Canonical momenta and Hamiltonian: 

   (M1.8) 

Actually, selecting proper gauge is important when you trying to solve equations of motion. 

While, in principle, it is possible to use t as independent variable, it is customary in accelerator 

physics to use s, th  length along trajectory of a reference (or ideal, or equilibrium…) particle 

: 

     (M1.9) 

 as an independent variable. The reason for this preference is the fact that accelerators are bolted 

to the floor with majority of its elements (magnets, drift spaces, diagnostics, etc.) be either  time-

independent or slow-varying in time but having fixed location in the space. T 

 

Note: we use here e as a generic symbol for particle charge (we will use positive +e for positrons 

and protons, it is negative -e for electrons, and Ze for ions, when we talk about specific cases), as 

well as m is a generic symbol for particle’s mass.  
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Accelerator Hamiltonian
This is especially important for periodic system, such periods in the accelerator lattice or for 
storage ring, where particles see identical lattice repeating at each turn with element appearing in 
the same places again and again. It is not true about if time is used as independent variable – 
arrival time of particles can both differ and also oscillate from turn to turn. Hence, we are for an 
additional treat with Hamiltonian 

 
Fig. M.1.1. Various possible reference trajectories, from a simple straight pass to a circular one, 

though all other possibilities. 
It is important for independent variable to be a monotonous function (as is time), which requires 
that the reference particle never stops moving (except possibly at the beginning and the end of 
the reference trajectory). In this case equation (M1.9)  has unique solution for the arrival 
time of the referense particle to the azimuth s: 

 (M1.10) 

Reference trajectories 

s = s(t)

t = to s( )
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Accelerator Coordinates
The reference trajectory is determined by initial 4-momentum of the reference particle and the 
EM field along its trajectory. We should consider that trajectory is given (and from  we also 
know the particle’s 4-momentum in each point of trajectory) and so satisfy the equation of 
motion.  Usually, EM fields are designed for the existence of such a trajectory (within constrains 
of Maxwell equation). Herein, the words reference trajectory and orbit are used interchangeably.  
Using uniqueness of (M1.10) we can write the reference partilce trajectory at the function of s: 

   (M.1.11)) 
with the charge to the designer of accelerator to make it real trajectory: 

    

Starting from this point, we use following conventions: Derivatives of any function with respect 
to the time will be shown by appropriate number of dots, while appropriate number of symbol ¢ 
will be used to indicate derivatives with respect to s: 

.   (M.1.11) 

There is infinite variety of possible reference trajectories. The most popular ones are flat, i.e. 
they lie in a plane. A typical example is the circular orbit of a storage ring with a horizontal 
trajectory. Many of reference orbits are piece-wise combinations of trajectories lying in various 
planes. Still, there are 3D reference orbits by design. As the matter of fact, all real reference 
orbits are 3D because of the field errors in magnets, and errors in aligning these magnets.  
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Fig. M1.2. Illustration of Frenet-Serret formulas and system from 

http://en.wikipedia.org/wiki/Frenet-Serret 
Hence, there is no good reason not to start this discussion from general 3D reference 

trajectory. Fortunately two French mathematicians, Jean Frédéric Frenet and Joseph Alfred 
Serret, in the mid-nineteenth century developed such a coordinate system, which is described by 
the Frenet-Serret formulas in classical differential geometry (O.Struik, Dirk J., Lectures on 
Classical Differential Geometry, Addison-Wesley, Reading, Mass, 1961). The Frenet-Serret 
coordinate system often is called the natural coordinate system. One important feature is that it 
has non-diagonal metrics. Hence, we have a bit of differential geometry to spice the mix.  
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Figures  illustrate the Frenet-Serret coordinate system and define 3 orthogonal unit vectors: 
Normal , tangent , and normal and bi-normal :  

. 

 
Fig. M.1.3. Unit vectors in the Frenet-Serret coordinate system and their definitions 
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The reference trajectory must be smooth, with finite second derivatives, etc….etc… The position 
of any particle located in close proximity to the reference trajectory can uniquely expressed as 
 

.    (M.1.12) 
 

Proximity to the reference orbit is important for the uniqueness of the extension (M.1.12): As 
shown on the figure above, equation (101-2) may have multiple solutions if the requirement of 
proximity is not applied, i.e, the expansion may have multiple branches and mathematically 
become too involved. 

              
Fig. M.1.4. Expansion of particle’s position in Frenet-Serret frame.  
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Hence, the position of any particle is uniquely describes as 

.     

i.e., it is fully described by 3 contra-variant coordinates: 

.     (M.1.13) 

The vectors  satisfy Frenet-Serret formulae: 

.   (M.1.14) 

where  
     (M.1.15) 

is the curvature of the trajectory, and  is its torsion.  

If the torsion is equal to zero, the trajectory remains in one plane, as designed for majority 
(99.99%) of accelerators. Curvature of trajectory is more common – each dipole magnet makes 
trajectory to curve. Hence for plane trajectories: 

.   (M.1.16) 

I will spare you exercise in differential geometry with general curvilinear coordinates – if you 
are interested, read Lecture 4 in our Advanced Accelerator Physics course:  

[2] http://case.physics.stonybrook.edu/index.php/PHY564_fall_2022  
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Accelerator Hamiltonian
The Hamiltonian of a charged particle in EM field in Cartesian coordinate system is 

,    

where the canonical momentum is . Let us explore how we can make the 

transformation to our “curved and twisted” coordinate system. The easiest way is to apply 
Canonical transformation with generation function: 

.   (M.1.17) 

to our new coordinates (M.1.13):  with new Canonical momenta obtained 
by simple differentiation 

  (M.1.18) 

give us accelerator Hamiltonian with time as independent variable:
 

 (M.1.19) 
Absence of torsion, again, simplifies it significantly: 
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Accelerator Hamiltonian
This is still the Hamiltonian with t as independent variable and three sets of canonical pairs 

. To change the independent variable to s let’s observe structure of the 
particle action integral:  

, 

where canonical pairs play identical role. When we use time t 

as independent variable, H serves as the Hamiltonian of the system. If we switch to  as 
independent variable, then   will serve as corresponding Hamiltonian, with 
becoming a new dependent variable (t is arrival time to azimuth s) and  serving as 
corresponding (conjugate) Canonical momentum – again, see details in [2]. What we need just to 
solve (M1.19) with respect to  to get most general Accelerator Hamiltonian: 

  (M.1.20) 

and equation of monition with s as independent variable: 

 (M.1.21) 

 

€ 

q1,P1{ }, q2,P2{ }, q3,P3{ }

S = P1 dq
1 + P2 ds+ P3 dq

3 − H ⋅dt
A

B

∫ ; q2 = s

 q1,P1{ }, q2 ,P2{ } q3,P3{ }, −t,H{ } 
q2 = s

h* = −P2 qt = −t
Pt = H

P2

h* = − 1+ Kx( ) H − eϕ( )2
c2

−m2c2 − P1 −
e
c
A1

⎛
⎝⎜

⎞
⎠⎟

2

− P3 −
e
c
A3

⎛
⎝⎜

⎞
⎠⎟

2

− e
c
A2 +κ x P3 −

e
c
A3

⎛
⎝⎜

⎞
⎠⎟
−κ y P1 −

e
c
A1

⎛
⎝⎜

⎞
⎠⎟

′x = dx
ds

= ∂h*

∂ P1

;
dP1

ds
= − ∂h

*

∂ x
;                ′y = dy

ds
= ∂h*

∂ P3

;
dP3

ds
= − ∂h

*

∂ y
;

qt = −t, Pt =H{ }, qt′ =
∂h*

∂ Pt
→ dt
ds

= − ∂h
*

∂H
;  
dPt
ds

= ∂h*

∂qt
→ dH
ds

= ∂h*

∂ t
.



January 30, 2023 Lecture 1 21

Choosing a specific gauge
to express 4-potential as explicit function of electric and magnetic fields. 
Again, I’ll spare you of tedious details how to choose a gauge for the 4-potential. One good 
choice (my preference) is to make the vector potential equal to zero at the reference trajectory – 
no need to carry something useless for reference particle… Two other auxiliary conditions will 
allow us to express the components of the 4-vector potential in a form of the Taylor series: 

   (M.1.17) 

that can be achieved by gauge transformation  

  (M.1.18) 

Conditions (116) have following important consequences: 

  (M.1.19) 

a) 
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⎠⎟
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Expression for 4-potentials
After a one-page-long exercise, using the first pair of Maxwell equations and conditions 
identified at previous slide, one can express the 4-potential in this gauge though the components 
of the magnetic- and electric- fields, in other words, make an unique vector potential: 

  (M.1.20) 

where denotes that the value of the function f is taken at the reference orbit : i.e., 
at , but in an arbitrary moment of time t.  Removing torsion for plane trajectories 
removes only few terms (indicated in red) and does not significantly simplify expressions.   

We should note that  is determined with the accuracy of an arbitrary constant, which 
can be eliminated by requesting  at some point along the reference trajectory. 
The coefficients in (118) can be expanded further using a trivial time series  
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⎨
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⎬
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An equilibrium particle
One important feature of the field  expansion that no conditions in the EM field are assumed; 
thus, it can be in free-space field (typical for single-particle dynamics) or a field with sources 
(for example, charges and currents of beam are examples). Hence, the expansion is applicable to 
any arbitrary accelerator problem. We reserve the notions  for values taken at the 

reference trajectory  at the reference time .  
It is noteworthy that the value of our new Hamiltonian for the reference particle is the full 
particle’s momentum with the minus sign: 

 

A particle that follows the reference trajectory is called an equilibrium (or reference) one: 
,     

with  This is where condition  is useful, i.e., for  

.  (M.1.21) 

or in the differential form  

   (M.1.22) 
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� 

! 
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e
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A3 ref
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ds ref
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d P1 ref
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= ∂h*

dP3 ref

= 0; 

dP1

ds ref

= − ∂h
*

dx ref

= 0;  dP3

ds ref
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*
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An equilibrium particle:
HW1

It will be your homework to prove that condition for reference (equilibrium) particle result in 
following relations: 

;   (M.1.23)  

;    (M.1.24) 

               (M.1.25) 

 

.      (M.1.26) 

Useful hint – use Hamiltonian equations and evaluate terms at the reference orbit (x=0, y=0, 
P1,2 =0) and for refence particle momentum – it will eliminate a lot. Only after that bring it to 
reference time… 

K s( ) ≡ 1
ρ s( ) = − e

poc
By ref

+ Eo

poc
Ex ref

⎛
⎝⎜

⎞
⎠⎟

Bx ref =
Eo
poc
Ey ref

dto(s)
ds

= 1
vo(s)

dEo(s)
ds

= −e∂ϕ
∂ s ref

≡ eE2(s,to(s))
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Going infinitesimal
By selecting the reference trajectory as basis for our coordinate system, we set the transverse 
coordinates and momenta at zero at the reference orbit - two canonical pairs 

have solid origin. The third pair is odd; it is not zero for the reference particle and has 

different dimensions from . A more natural Canonical pair 

can be produced by generating function  with  
 having dimension of distance and -  the dimension of momentum. 

To select variables that are zero at the reference orbit  
,   (M.1.27) 

we can used generation function  

, 

to produce  desired:  

  (M.1.28) 

 q1,P1{ }, q3,P3{ }
−t,H{ } 
 q1,P1{ }, q3,P3{ }
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∂Φ
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∫



January 30, 2023 Lecture 1 26

Full Hamiltonian
The change to the Hamiltonian comprised only of meaningful terms as well as just a trivial 
function of s, g(s):  

 

where we used . Additive g(s) simply can be dropped from the Hamiltonian - it 

does not change equations of motion. Now the only remaining task is to express the new 
Hamiltonian function with an updated canonical pair (130) and (115): 

  (M.1.29) 

where we used following expansion and definition: 

 (M.1.30) 
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Scaling variables

Frequently, it is useful to scale one of canonical variables. Typical scaling in accelerator physics 
involves dividing the canonical momenta  by the momentum of the reference particle: 

.      

These variables are dimensionless and are close to  for small deviations. Such 
scaling only is allowed in Hamiltonian mechanics when the scaling parameter is constant, i.e., is 
not function of s. 
Scaling by a constant is easy; divide the Hamiltonian by the constant and rename the variables. 
Hence, transforming (134) with constant, called po, will make Hamiltonian (132) into  

 (M.1.31) 

Usage of this Hamiltonian is very popular for storage rings or transport channels, wherein the 
energy of the particles remains constant in time. It should not be employed for particles 
undergoing acceleration or deceleration.  
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Expanding the Hamiltonian
Expanding the Hamiltonian is the main tool in accelerator physics to separate effects of various 
orders and use of perturbation-theory approaches assuming that  

; 

and that the EM fields are sufficiently smooth around the reference trajectory to allow expansion 
in terms of . We will consider* all six variables to be of the same order (of 
infinitesimally, ε<<1). The order of expansion is the maximum total power in a product of 

. Unless there is a good reason not to do so, we truncate the series using this rule. 
The general expansion of Hamiltonian can be accomplished via the already derived expansion 

for 4-potential and the well-known expansion of the square root: 

. 

First order terms in expansion of the Hamiltonian: 

  

must be zero to satisfy conditions for the reference particle: 
,  i.e. 

 

*Sometimes, one can keep explicit the time dependence of fields and expand only the rest of the variables. One such 
case is an approximate, and useful, description of synchrotron oscillations. 
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Expanding the Hamiltonian
Second order (oscillator) expansion. We continue with ideal condition and expand the 
Hamiltonian to the most important - second order 

;   (M.1.32) 

 

         

(M1.33) 
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Expanding the Hamiltonian
If momentum po is constant, we can use (134) and rewrite Hamiltonian of the linearized motion 

(140) as  

 

;  (M.1.34)  

; 

Note that  

; 

i.e. as soon as L=0, we can use traditional x’ and y’ as reduced momenta.  

For a flat reference orbit - , in the absence of transverse coupling (L=0, N=0) and transverse 

electric fields, the accelerator Hamiltonian has the form which is used in most of the text books 

and papers: 

;   (M.1.34)  
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Linear equations of motion.   
Hamiltonian system is described by the set of coordinates, Canonical momenta, and 
Hamiltonian. In matrix form, the Hamiltonian equations can written compactly: 

; M1.35) 

where S is a generator (norm) of a symplectic group of matrixes (two different but 

closely related types of mathematical groups). The space of coordinates and momenta is 

called phase space of the system with dimension 2n. There is no reason to select specific 

n, unless n=1 and motion  is one-dimensional.  

We finished the accelerator Hamiltonian expansion by concluding that the first not-trivial 

term in the accelerator Hamiltonian expansion is a quadratic term of canonical momenta 

and coordinates. This Hamiltonian can be written in the matrix form (letting n be a 

dimension of the Hamiltonian system with n canonical pairs{qi,	Pi})

 
;       (M1.36) 

, 

with the self-evident feature that  Hamiltonian matrix is symmetric: 

     (M1.37) 
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⎢
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⎥
⎥
⎥
⎥
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The equations of motion are just a set of 2n linear ordinary differential equations with s-
dependent coefficients: 

  (M1.38) 

One important feature of this system is that  

, (M1.39) 

(the trivial proof is based on  and
). i.e., the Wronskian determinant of the system 

(http://en.wikipedia.org/wiki/Wronskian ) is equal to one.  The famous Liouville theorem 
comes from well-known operator formula ; we do not need it here 

because we will have an easier method of proof. You also have it as a homework 
problem. 
One important consequence of this observation is that Hamiltonian systems preserve 
phase space occupied by particles and that dissipative (non-Hamiltonian) forces are 
needed to make trace of the D non-zero. 

dX
ds

= D(s) ⋅ X ; D = S ⋅H(s)
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Trace[D] = 0
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Trace[AB] = Trace[BA]; Trace[AT ]=Trace[A]
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ddet[W(s)]
ds

= Trace[D]
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The solution of any system of first-order linear differential equations can be expressed 
through its 2n initial conditions Xo at azimuth so  

,     (M.1.40) 

through the transport matrix M(so/s) : 
.    (M.1.41) 

There are two simple proofs of this theorem. The first is an elegant one: Let us consider 
the matrix differential equation 

     (M.1.42) 

with a unit matrix as its initial condition at azimuth so  
.    (M.1.43) 

Such solution exists* and then we readily see that 

.     (M.1.44) 

satisfies : 

#.     

* Mathematically, it is nothing else but 
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A more traditional approach to the same solution is to use the facts that a) there exists a 

solution of equation with arbitrary initial conditions (less-trivial 

statement); and, b) any linear combination of the solutions also is a solution of 

 (very trivial one). Considering a set of solutions Mk(s), k=1,…2n, with 

initial conditions at azimuth so ,then 

, ; 

and their linear combination 

, 

which satisfies the initial condition (167) 

. 

Now, we recognize that this solution is nothing other than the transport matrix with 
matrix M(s) being a simple combination of 2n columns Mk(s): 

. 

dX
ds

= D(s) ⋅ X

dX
ds

= D(s) ⋅ X

� 

M1(so) =

1
0
...
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;M2(so) =

0
1
...
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;..........M2n (so) =

0
0
...
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;

� 

dMk (s)
ds

=D(s) ⋅ Mk (s)

� 

X(s) = xko
k=1

2n

∑ ⋅ Mk (s)

� 

X(so) = xko
k=1

2n

∑ ⋅ Mk (so) =

x1,0
x2,0
...

x2n−1,0
x2n,0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

= Xo

� 

M(s) = M1(s),M2(s),...,M2n (s)[ ]
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In differential calculus, the solution is defined as 

  (M.1.45) 

The fact that the transport matrix for a linear Hamiltonian system has unit determinant 
(i.e., the absence of dissipation!) 

.   (M.1.46) 

is the first indicator of the advantages that follow. Let us consider the invariants of 
motion characteristic of linear Hamiltonian systems, i.e., invariants of the symplectic 
phase space*. Starting from the bilinear form of two independent solutions of eq. (165), 
X1(s) and X2(s), (it is obvious that XTSX=0) we show that  

. (M.1.47) 

The proof is straightforward  

. 

* Phase space is defined as the 2n-dimentional space of canonical variable {qi,Pi}, that is, the 
space where this Hamiltonian system evolves. 

M so s( ) = exp D(s)ds
so

s

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= lim
N→∞

I +D(sk )Δs( )
k=1

N

∏ ;

Δs = (s− so ) / N ; sk ∈{so + (k −1) ⋅ Δs,so + k ⋅ Δs}

� 

detM = exp Trace(D(s))ds
so

s

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=1

� 

X2
T (s) ⋅S ⋅ X1(s) = X2

T (so) ⋅S ⋅ X1(so) = inv

� 

d
ds

X2
T ⋅S ⋅ X1( ) = X2

T ′ ⋅S ⋅ X1 + X2
T ⋅S ⋅ X1′ = X2

T ⋅ (SD)T S+ SSD( ) ⋅ X1′ ≡ 0
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Proving that transport matrices for Hamiltonian system are symplectic is very similar: 

.     (M.1.48) 

Beginning from the simple fact that the unit matrix is symplectic: , i.e.  
is symplectic, and following with the proof that 

: 

 # 

Symplectic square matrices of dimensions 2n x 2n, which include unit matrix I, create a 
symplectic group, where the product of symplectic matrices also is a symplectic matrix*. 
The symplectic condition (177) is very powerful and should not be underappreciated. 
Before going further, we should ask ourselves several questions:  How can the inverse 
matrix of M be found? Are there invariants of motion to hold-on to? Can something 
specific be said about a real accelerator wherein there are small but all-important 
perturbations beyond the linear equation of motions? 

*Group G is defined as a set of elements, with a definition of a product of any two elements of the 
group; ; . The product must satisfy the associative law : 

 there is an unit element in the group 
 and inverse elements: 
 

� 

MT ⋅S ⋅M = S

� 

IT ⋅S ⋅ I = S

� 

M so so( )

� 

MT so s( ) ⋅S ⋅M so s( ) =MT so so( ) ⋅S ⋅M so so( ) = S

� 

d
ds

MT ⋅S ⋅M( ) = MT′ ⋅S ⋅M + MT ⋅S ⋅ ′ M = MT ⋅ (SD)T S + SSD( ) ⋅M ≡ 0

P = A • B ∈G A, B∈G
A • (B •C) = (A • B)• C;

� 

I ∈ G;I • A = A • I = A :∀A ∈ G;

� 

∀A ∈ G;∃B(called A−1)∈ G : A−1A = AA−1 = I.
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As you probably concluded, the Hamiltonian method yield many answers, and is why it 
is so vital to research.  

We can count them: The general transport matrix M (solution of  with 
arbitrary D) has (2n)2 independent elements. Because the symplectic condition 

 represents an asymmetric matrix with n-diagonal elements equivalently 
being zeros, and the conditions above and below the diagonal are  identical – then only 
the n(2n-1) condition remains and only the n(2n+1) elements are independent. For n=1 
(1D) there is only one condition, for n=2 there are 6 conditions, and n=3 (3D) there are 
15 conditions. Are these facts of any use in furthering this exploration? 

First, symplecticity makes the matrix determinant to be unit*: 

 

i.e., it preserves the 2n-D phase space volume occupied by the ensemble of particles 
(system):  

     (M.1.49) 

The other invariants preserved by symplectic transformations are called Poincaré 
invariants and are the sum of projections onto the appropriate over- manifold in two, 
four…. (2n-2) dimensions: 

  (M.1.50) 

*HW: for n=1 case with 2x2 matrices to verify  that the symplectic product is reduced to 
determine  

   (M.1.51) 

� 

′ M = D(s) ⋅M

� 

MT ⋅S ⋅M −S = 0

� 

det MT (s) ⋅S ⋅M(s)[ ] = detS → detM(s)( )2 = 1→ detM = ±1;   detM(0) = 1→ detM = 1 #

� 

dqi
i=1

n

∏ dPi∫ = inv

� 

dqi∫∫ dPi

i=1

n

∑ = inv; dqidP
idq jdP

j∫∫∫∫
i≠ j
∑ = inv......

� 

M2x2 =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; S2x2 = σ;⇒MT ⋅σ ⋅M = detM ⋅σ
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For example, matrix M can be represented as n2 combinations of 2x2 matrices Mij: 

.  (M.1.52) 

Using equation (M.1.51), we easily demonstrate the requirement for the symplectic 
condition (M.1.48) is that the sum of determinants in  each row of these 2x2 matrices is 
equal to one; the same is true for the columns: 

   (M.1.53) 

with a specific prediction for decoupled matrices, which are block diagonal: 

   (M.1.54) 

M =
M11 ... M1n

... ... ...
Mn1 ... Mnn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
; S =

σ ... 0
... ... ...
0 ... σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;σ = 0 1

−1 0
⎡

⎣
⎢

⎤

⎦
⎥;

MTSM =

M1i
TσM1i

i=1

n

∑ ... ...

... ... ...

... ... Mni
TσMni

i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
σ ... 0
... ... ...
0 ... σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
;

M1i
TσM1i

i=1

n

∑ =σ ⋅ detM1i
i=1

n

∑ .

det Mij⎡⎣ ⎤⎦
i=1

n

∑ = det Mij⎡⎣ ⎤⎦
j=1

n

∑ = 1

� 

M =
M11 0... 0
0 ... 0
0 0... Mnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
; det Mii[ ] =1.
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Other trivial and useful features are: for the columns  

     (M.1.55) 

or lines of the symplectic matrix: 

  (M.1.56) 

We could go further, but we will stop here by showing the most incredible feature of 
symplectic matrices, viz., that it is easy to find their inverse (recall there is no general 
rule for inverting a 2n x 2n matrix!) Thus, multiplying  from left by –S we 
get  

.    (M.1.57) 
As an easy exercise for 2x2 symplectic (i.e. with unit determinant – see note below) 

matrices, you can show that  (183) gives . It is a much less trivial 

task to invert 6x6 matrix; hence, the power of symplecticity allows us to enact many 
theoretical manipulations that otherwise would be impossible. Obviously, and easy to 
prove, transposed symplectic and inverse symplectic matrices also are also symplectic:  

   (M.1.58) 

M = C1 C2 .... C2n−1   C2n
⎡
⎣

⎤
⎦   ⇒

C2k−1
T SC2k   = −C2k

T SC2k−1 = 1, k = 1,..,n
others are 0

M =

L1

L2

....
L2n−1

L2n

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

   ⇒−L2k SL2k−1
T   = L2k−1SL2k

T = 1, others are 0

� 

MT ⋅S ⋅M = S

� 

−S ⋅MT ⋅S ⋅M = I  ⇒  M−1 = −S ⋅MT ⋅S

� 

M =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

M =
d −b
−c a
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

M−1T ⋅S ⋅M−1 = S; M ⋅S ⋅MT = S.
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To conclude

• We walked through a Hamiltonian method of 
describing particle’s motion in accelerators

• We learned that transport matrices are 
symplectic, which corresponds to invariants of 
motion: one for 1D, six for 2D and 15 for 3D 
motion.

• One of the important implication is that we 
have analytical expression for inverse matrices
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