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Why electron/positron storage rings are different?

SYNCHROTRON RADIATION

* Origin: Energy emitted to infinity or other
boundary condition.

— Form: Electromagnetic wave
— Source: the charged particles

— Direction: Along the tangent of the beam trajectory
curve.
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SR Power

The power and its distribution can be calculated from the ‘retarded
potential’ - there will be a dedicated lecture on SR
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Radiation Angular Distribution
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SR in storage ring

* The power of SR radiation 1n a dipole magnet
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Energy Loss in e-ring

The 2"d radiation integral /,.

* In one turn, the energy loss 1s
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Energy losses, practical units

* For electrons and positrons:

4
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e For Protons:
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* Typically the energy loss per turn 1s much less than
the beam energy, and should be restored by RF cavity.



What we get so far

* The SR energy loss per turn and power have
stong energy dependence.
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The longitudinal motion, revisit

eV wo

§ = 2 2 Eq (sin ¢ — sin ¢y)
dAE  eVwqcos @
— = Wy £ T
dt 27 rt
¢2 S hw0775
dr &
at ~ B,

d*AE  eVwghcos ¢577AE

dt?

27TEO

wWo dUAE

2T dE

wWo dU AFE

2w dE dit



Damped Motion

The second order differential equation becomes
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Energy Loss per Turn

In this lecture, we will consider ultra-relativistic particles with y>>1

In longitudinal dynamics, we want to know the SR energy loss per turn for
non-synchronous particle.

* Different energy has different radiation power
 Different energy has different travelling time
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Radiation Power
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Energy loss dependence

Here, we ignore second order terms:
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Damping Partition Number
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And the damping factor becomes
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Transverse Damping (Vertical)

* The particle loose 1t’s momentum 1n the very narrow
cone ~1/y along the direction of motion, and regain
its momentum 1n RF 1n z-direction.

If we jump to the result: the
damping rate in vertical plain is
half of that in longitudinal plane.
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Transverse Damping (Horizontal)

* This case 1s more complicated because of the
coupling with longitudinal motion via dispersion

function.

Dispersion will ‘heat up’ the
horizontal motion. Luckily we
have similar damping scheme as

w orbit in vertical plain.
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Quantum Fluctuations of
Synchrotron Radiation

Synchrotron radiation 1s not a continuous emission

Instead, energy 1s radiated at random moments and
energy loss has quantum nature

The emission obey Poisson distribution.

It serves as a source of the noise that excites (heat)
motion of particles in the electron beam.

If u 1s the emitted photon energy, the average
amplitude of energy deviation is
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Equilibrium energy spread

The damping and excitation will reach the a
balance point.
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Equilibrium energy spread 11

* The equilibrium of the energy spread:
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* Amazingly it does not depend on the RF
voltage. However the bunch length does.



Transverse equilibrium

* Horizontal equilibrium
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* Vertical equilibrium
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Almost zero size in vertical direction.



Transverse Coupling

* In reality vertical emittance/beam size cannot
be zero

 There are other effects that dominate over the
equilibrium-> Coupling
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Summary: Radiation Integral
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Beam life-time

* Quantum lifetime

— Although the equilibrium emittance 1s small, there
1s chance that, for one single electron, continuous
random emission drive the electron out of aperture

— Longitudinal or Transverse.

 Touschek lifetime

— Coulomb scattering in the bunch may transfer
transverse momentum to longitudinal plane and
cause beam loss.



Typical “good’ numbers

Revolution time: ~ micro second
Longitudinal oscillation: sub millisecond

Damping time: few thousand turns

— Several millisecond
Energy spread ~10-3
Rms transverse emittance sub nm-rad

Rms vertical emittance several pm-rad



