Problem 1

We are trying to find the approximate solution of the form

$$
\begin{equation*}
\lambda=a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2} \tag{1}
\end{equation*}
$$

for the polynomial equation

$$
\begin{equation*}
\lambda^{3}+2 i \hat{C} \lambda^{2}-\hat{C}^{2} \lambda=i \tag{2}
\end{equation*}
$$

Inserting eq. (1) into eq. (2) yields
$f(\hat{C}) \equiv\left(a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2}\right)^{3}+2 i \hat{C}\left(a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2}\right)^{2}-\hat{C}^{2}\left(a_{0}+a_{1} \hat{C}+a_{2} \hat{C}^{2}\right)-i=0$.
Requiring eq. (3) to be satisfied in the zeroth order in \hat{C} leads to

$$
f(0) \equiv a_{0}^{3}-i=0
$$

which leads to (we are searching for the growing mode, i.e. $\operatorname{Re}\left(a_{0}\right)>0$)

$$
\begin{equation*}
a_{0}=\frac{\sqrt{3}}{2}+i \frac{1}{2} \tag{4}
\end{equation*}
$$

Requiring eq. (3) to be satisfied in the first order in \hat{C} leads to

$$
\begin{equation*}
\left.\frac{d}{d \hat{C}} f(\hat{C})\right|_{\hat{C}=0}=0 \Rightarrow 3 a_{1} a_{0}^{2}+2 i a_{0}^{2}=0 \Rightarrow a_{1}=-i \frac{2}{3} \tag{5}
\end{equation*}
$$

Similarly, requiring eq. (3) to be satisfied in the second order in \hat{C} leads to

$$
\begin{array}{r}
\left.\frac{d^{2}}{d \hat{C}^{2}} f(\hat{C})\right|_{\hat{C}=0}=\left.0 \Rightarrow \frac{d}{d \hat{C}}\left[3 \lambda^{2} \lambda^{\prime}+2 i \lambda^{2}+4 i \hat{C} \lambda \lambda^{\prime}-2 \hat{C} \lambda-\hat{C}^{2} \lambda^{\prime}\right]\right|_{\hat{C}=0}=0 \\
\Rightarrow 6 a_{0} a_{1}^{2}+3 a_{0}^{2} 2 a_{2}+8 i a_{0} a_{1}-2 a_{0}=0 \tag{6}\\
\Rightarrow a_{2}=\frac{-3 a_{1}^{2}-4 i a_{1}+1}{3 a_{0}}=-\frac{1}{9}\left(\frac{\sqrt{3}}{2}-i \frac{1}{2}\right)
\end{array}
$$

Problem 2
From the criteria of FEL saturation,

$$
\begin{equation*}
\Omega_{p} L_{G}=1 \tag{7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\Omega_{p} \equiv \sqrt{\frac{e E \theta_{s} \omega}{\gamma_{z}^{2} c \mathcal{E}_{0}}}=\frac{1}{L_{G}}=\sqrt{3} \Gamma . \tag{8}
\end{equation*}
$$

Taking the fourth power of eq. (8) yields

$$
\begin{equation*}
\left(\frac{e E \theta_{s} \omega}{\gamma_{z}^{2} c \mathcal{E}_{0}}\right)^{2}=9 \Gamma^{4}=9 \Gamma \Gamma^{3}=9 \Gamma \frac{\pi j_{0} \theta_{s}^{2} \omega}{c \gamma_{z}^{2} \gamma I_{A}} \tag{9}
\end{equation*}
$$

where we used

$$
\begin{equation*}
\Gamma \equiv\left[\frac{\pi j_{0} \theta_{s}^{2} \omega}{c \gamma_{z}^{2} \gamma I_{A}}\right]^{1 / 3} \tag{10}
\end{equation*}
$$

Eq. (9) can be rewritten into

$$
\begin{equation*}
E^{2}=9 \Gamma \frac{c \gamma_{z}^{2}}{\omega} \frac{\pi j_{0}}{e^{2} \gamma I_{A}} \mathcal{E}_{0}^{2}=9 \rho \frac{\pi j_{0}}{e^{2} \gamma I_{A}} \mathcal{E}_{0}^{2} \tag{11}
\end{equation*}
$$

Inserting the definition of Alfven current,

$$
\begin{equation*}
I_{A}=\frac{4 \pi \varepsilon_{0} m c^{3}}{e} \tag{12}
\end{equation*}
$$

into eq. (11) yields

$$
\begin{equation*}
E^{2}=9 \rho \frac{\pi j_{0}}{e \gamma 4 \pi \varepsilon_{0} m c^{3}} \mathcal{E}_{0}^{2}=\frac{9}{4} \rho \frac{j_{0}}{e \varepsilon_{0} c} \mathcal{E}_{0} \tag{13}
\end{equation*}
$$

where we used

$$
\begin{equation*}
\mathcal{E}_{0}=m \gamma c^{2} \tag{14}
\end{equation*}
$$

Consequently, the radiation power at saturation is

$$
\begin{equation*}
P_{s a t}=\varepsilon_{0} c E^{2} A=\frac{9}{4} \rho \frac{j_{0} A}{e} \mathcal{E}_{0}=\frac{9}{4} \rho \frac{\mathcal{E}_{0}}{e} I_{e} \tag{15}
\end{equation*}
$$

i.e. $\chi=\frac{9}{4}$.

