
Solutions for HW # 20 

Problem 1: 

According to the footnote in Jackson, the delta function in the coordinate system  1 2 3, ,x x x  is related 

to the coordinate system  1 2 3, ,    by the following relation: 
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is the Jacobian,  1 2 3', ', 'x x x  and  1 2 3', ', '   are coordinates of the singular point at the two systems 

respectively. The cylindrical coordinate system  , ,x y z   is related to the Cartesian coordinate system 

 , ,r z  by 
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Inserting eq. (3) into eq. (2) yields 
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and hence eq. (1) becomes 
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Without losing generality, we can pick the Cartesian coordinates system such that, for an electron 

moving along z axis, its trajectory is given by 
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and consequently, its charge density is given by inserting eq. (6) into eq. (5): 
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As the cylindrical coordinate is not uniquely defined with respect to the azimuthal angle , we can write 

eq. (7) into the following form 
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Eq. (8) suggests that  , ,r z   is a periodic even function in   with a period of 2  and hence it can 

be expressed as a summation of its Fourier components: 
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where 
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Inserting eq. (10) into eq. (9) yields 
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where for the last step, we used the fact that  r a   implies that r  always take value at a .  

 

 

 

 

 



Problem 2: 

 

 

 

Figure 1: Integration contour in complex '  plane. 

 

From Cauchy residue theorem, the contour integral can be calculated as 
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The LHS of (12) can be split into the following form 
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where the integral along C2 vanishes since we assume  / / 'Z   is well behaved at large ' . From eq. 

(12) and (13), it follows 
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Splitting eq. (14) into the real and imaginary part leads to 
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