## Solutions for HW \# 20

Problem 1:
According to the footnote in Jackson, the delta function in the coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$ is related to the coordinate system $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ by the following relation:

$$
\begin{equation*}
\delta\left(x_{1}-x_{1}^{\prime}\right) \delta\left(x_{2}-x_{2}^{\prime}\right) \delta\left(x_{3}-x_{3}^{\prime}\right)=\frac{1}{\left|J\left(x_{i}, \xi_{i}\right)\right|} \delta\left(\xi_{1}-\xi_{1}^{\prime}\right) \delta\left(\xi_{2}-\xi_{2}^{\prime}\right) \delta\left(\xi_{3}-\xi_{3}^{\prime}\right) \tag{1}
\end{equation*}
$$

where

$$
J\left(x_{i}, \xi_{i}\right)=\left(\begin{array}{lll}
\frac{\partial x_{1}}{\partial \xi_{1}} & \frac{\partial x_{1}}{\partial \xi_{2}} & \frac{\partial x_{1}}{\partial \xi_{3}}  \tag{2}\\
\frac{\partial x_{2}}{\partial \xi_{1}} & \frac{\partial x_{2}}{\partial \xi_{2}} & \frac{\partial x_{2}}{\partial \xi_{3}} \\
\frac{\partial x_{3}}{\partial \xi_{1}} & \frac{\partial x_{3}}{\partial \xi_{2}} & \frac{\partial x_{3}}{\partial \xi_{3}}
\end{array}\right)
$$

is the Jacobian, $\left(x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, x_{3}{ }^{\prime}\right)$ and $\left(\xi_{1}{ }^{\prime}, \xi_{2}{ }^{\prime}, \xi_{3}{ }^{\prime}\right)$ are coordinates of the singular point at the two systems respectively. The cylindrical coordinate system $(x, y, z)$ is related to the Cartesian coordinate system $(r, \theta, z)$ by

$$
\begin{align*}
& x=r \cos \theta \\
& y=r \sin \theta  \tag{3}\\
& z=z
\end{align*}
$$

Inserting eq. (3) into eq. (2) yields

$$
J=\left(\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0  \tag{4}\\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and hence eq. (1) becomes

$$
\begin{equation*}
\delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right) \delta\left(z-z_{0}\right)=\frac{1}{r} \delta\left(r-r_{0}\right) \delta\left(\theta-\theta_{0}\right) \delta\left(z-z_{0}\right) \tag{5}
\end{equation*}
$$

Without losing generality, we can pick the Cartesian coordinates system such that, for an electron moving along $z$ axis, its trajectory is given by

$$
\begin{align*}
& x_{0}=a \\
& y_{0}=0,  \tag{6}\\
& z_{0}=v t
\end{align*}
$$

and consequently, its charge density is given by inserting eq. (6) into eq. (5):

$$
\begin{equation*}
\rho(\vec{x})=Q \delta(\vec{x})=Q \frac{1}{r} \delta(r-a) \delta(\theta) \delta(z-v t) \tag{7}
\end{equation*}
$$

As the cylindrical coordinate is not uniquely defined with respect to the azimuthal angle $\theta$, we can write eq. (7) into the following form

$$
\begin{equation*}
\rho(r, \theta, z)=Q \frac{1}{r} \delta(r-a) \delta(z-v t) \sum_{n=-\infty}^{\infty} \delta(\theta-2 n \pi) \tag{8}
\end{equation*}
$$

Eq. (8) suggests that $\rho(r, \theta, z)$ is a periodic even function in $\theta$ with a period of $2 \pi$ and hence it can be expressed as a summation of its Fourier components:

$$
\begin{equation*}
\rho(r, \theta, z)=Q \frac{1}{r} \delta(r-a) \delta(z-v t) \sum_{k=-\infty}^{\infty} a_{k} \exp (i k \theta) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} \delta(\theta-2 \pi n) \exp (-i k \theta) d \theta=\frac{1}{2 \pi} \tag{10}
\end{equation*}
$$

Inserting eq. (10) into eq. (9) yields

$$
\begin{align*}
\rho(r, \theta, z) & =Q \frac{1}{\pi r} \delta(r-a) \delta(z-v t)\left\{\frac{1}{2}+\sum_{m=1}^{\infty} \cos (m \theta)\right\} \\
& =Q \frac{1}{\pi r} \delta(r-a) \delta(z-v t) \frac{1}{1+\delta_{m, 0}} \sum_{m=0}^{\infty} \cos (m \theta)  \tag{11}\\
& =\sum_{m=0}^{\infty} \frac{Q_{m} \cos (m \theta)}{\pi a^{m+1}\left(1+\delta_{m, 0}\right)} \delta(r-a) \delta(z-v t)
\end{align*}
$$

where for the last step, we used the fact that $\delta(r-a)$ implies that $r$ always take value at $a$.

Problem 2:


Figure 1: Integration contour in complex $\omega^{\prime}$ plane.

From Cauchy residue theorem, the contour integral can be calculated as

$$
\begin{equation*}
\int_{C} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}=2 \pi i Z_{/ /}(\omega) \tag{12}
\end{equation*}
$$

The LHS of (12) can be split into the following form

$$
\begin{align*}
\int_{C} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime} & =\int_{C_{1}} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}+\int_{C_{2}} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}+\int_{C_{3}} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime} \\
& =P . V \cdot \int_{-\infty}^{\infty} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}+0+\int_{e^{i \pi}}^{e^{i 2 \pi}} \frac{Z_{/ /}(\omega)}{e^{i \theta}} d e^{i \theta}  \tag{13}\\
& =P . V . \int_{-\infty}^{\infty} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}+0+i \pi Z_{/ /}(\omega)
\end{align*}
$$

where the integral along $C_{2}$ vanishes since we assume $Z_{/ /}\left(\omega^{\prime}\right)$ is well behaved at large $\left|\omega^{\prime}\right|$. From eq. (12) and (13), it follows

$$
\begin{equation*}
Z_{/ /}(\omega)=-\frac{i}{\pi} P . V \cdot \int_{-\infty}^{\infty} \frac{Z_{/ /}\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime} \tag{14}
\end{equation*}
$$

Splitting eq. (14) into the real and imaginary part leads to

$$
\begin{equation*}
\operatorname{Re}\left[Z_{/ /}(\omega)\right]=\frac{1}{\pi} P \cdot V \cdot \int_{-\infty}^{\infty} \frac{\operatorname{Im}\left[Z_{/ /}\left(\omega^{\prime}\right)\right]}{\omega^{\prime}-\omega} d \omega^{\prime} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im}\left[Z_{/ /}(\omega)\right]=-\frac{1}{\pi} P \cdot V \cdot \int_{-\infty}^{\infty} \frac{\operatorname{Re}\left[Z_{/ /}\left(\omega^{\prime}\right)\right]}{\omega^{\prime}-\omega} d \omega^{\prime} \tag{16}
\end{equation*}
$$

