Homework 15. Due November 2

Problem 1. 20 points. A weak transverse coupling.
*** STAR part - 50 points

Consider a fully uncoupled x and y betatron motion in a storage ring with circumference
C
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The eigen vectors and tunes are considered to be known. Introduce a week coupling by
SQ-quadrupole and solenoidal fields (for torsion equal zero):
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(a) Write explicitly expressions for new betatron tunes using our developed perturbation
method. Show that there is linear term on dn,0L only in case of coupling resonance

when y =tu +27wm.
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(b) For the case u, # u, write expressions for new Eigen vectors perturbation method

developed in class. Normalize them symplecticly.

STAR Part:

(*) Using new eigen vectors and substituting them into the Hamiltonian, find tune change
expression on next order of 6n,6L for the case p, # . It is fine if it is just an integral.

(**)What should we do with eigen vectors at coupling resonance, when (4, =tu +27wm.

Hint — look what is done with two energy degenerated levels in quantum mechanics.



Solution - use perturbation theory from lecture 18, Sample II1:
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Here is a short re-collection:
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and symplectic orthogonality of the eigen vectors
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Now we want to have periodic eigen vectors, €.g.
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we need to choose the initial conditions to make a coefficient looking like:
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We shall start from writing deviation of the Hamiltonian (desirably in the matrix form):
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First, let’s find tune changes
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to prove that they indeed change only in the second order of § L . If one gets to the next



(second order) perturbation — there will be also second order term of dn . Still, no first
order chance. A special case of the resonance u, =+u +27m - we will consider later.

To find perturbed eigen vectors using straight-forward convolutions
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It is easy to see that attained expression is periodic. We can show that new set is
symplectic-orthogonal for a general case - it is not more complicated that for specific
case. We just need to re-write (8-15) in a compact form.
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where all term is red are equal zero. One can also evaluate second order term to be



o(e*)=2ie>Y (la, -o,[)
J#k

Let’s now look at Y,,"SY, ;m#k
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Again, red term are equal zero and can be dropped. Similar equation work for
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Note, that this is all approximation with error of 0(82) . Naturally, not to have any errors,

we should get the transport matrices for the motion and then do everything perfectly — but
not analytically!

STAR PART — we will discuss it when we are discussing resonances.



