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Introduction I: What is free electron lasers

• A free-electron laser (FEL), is a type of laser whose 
lasing medium consists of very-high-speed electrons 
moving freely through a magnetic structure, hence 
the term free electron.

• The free-electron laser was invented by John Madey 
in 1971 at Stanford University.

• Advantages:
✓Wide frequency range

✓Tunable frequency

✓May work without a mirror (SASE)

• Disadvantages: large, expensive
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Introduction II: Applications and FEL facilities

• Operational FEL light sources worldwide (~20):

• Medical, Biology (small wavelength and 
short pulse are required for imaging 
proteins), Military (~Mwatts)…
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Introduction III: FEL facilities

Spring-8 Angstrom Compact Free 
Electron Laser, Japan

Shanghai SXFEL, China
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Introduction IV: Basic Setup
Planar undulator

Helical undulator

Helical wiggler for CeC PoP

By x,y,z( ) = B0 sin kuz( )
for x,y << gap size

Bx x, y, z( ) = B0 cos kuz( )

By x, y, z( ) = B0 sin kuz( )
for x, y << gap size

opposite helicity
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Introduction V: different types of FEL

FEL Oscillator
(Low gain regime)

FEL Amplifier
(High gain regime)

 
SASE FEL 

(High gain regime)

Self-Amplified Spontaneous Emittion (SASE)
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Unperturbed Electron motion in helical wiggler 
(in the absence of radiation field)
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Undulator parameter, 
also called aw

qs = K /g

Electron rotation angle 
in undulator:

*Assume the initial velocity of the electron 
make the integral constant vanishing.

vz = const.
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Energy change of electrons due to radiation field

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D 
analysis, which is usually valid for near axis analysis) propogating along z direction

Energy change of an electron is given by

Ez = 0

w = kc

To the leading order, electrons move with constant velocity and hence z = vz t - t0( )

y = kuz+ k z - ct( )

Pondermotive phase:
1

z

z

d dz d d d d
v

dt dt dz dz dz v dt
= =  =

E E E E E

9



Resonant Radiation Wavelength

We define the resonant radiation wavelength such that

kw + k0 - k0

c
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= 0 Þl0 = lw
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2 / c2 = g -2 +qs
2 = g -2 1+K 2( )

l0 »
lw 1+ K 2( )

2g 2
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eBwlw
2pmcFEL resonant frequency:

At resonant frequency, the rotation of the electron and the radiation field is 
synchronized in the x-y plane and hence the energy exchange between them is most 
efficient. 
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Helicity of radiation at synchronization

t0 < t1 < t2 < t3

Electrons move slower than radiation 
and hence see the radiation wave 
slipping ahead. As a result, the 
rotation direction of the radiation 
field seen by an electron is the same 
as its own rotation direction.

t
t

Radiation field observed by 
electrons

Electrons’ trajectories

The synchronization requires opposite helicity of radiation with respect to the electrons’ 
trajectories.
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Longitudinal equation of motion
In the presence of the radiation field, the longitudinal equation of motion of an 
electron read

y = kwz+ k z- ct( )

g z
2 =

g 2

1+ K 2( )
dg z
dg

=
g

g z 1+ K 2( )

d

dg z

1
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2bz
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d
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g z
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ö

ø÷
= -

1
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3g z

3

Detuning parameter:

Energy deviation:
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Low Gain Regime: Pendulum Equation

We assume that the change of the amplitude of the radiation field, E, is negligible 
and treat it as a constant over the whole interaction.

d2

dẑ2
y + ûcos y( ) = 0 ẑ =

z

lw

Pendulum equation: d2

dẑ2
y +

p

2

æ
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= 0
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RF phase,

Low Gain Regime: Similarity to Synchrotron Oscillation
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is the angle between the transverse velocity 

vector and the radiation field vector and hence 
there is no energy kick for 

y

y = p / 2

Synchrotron OscillationFEL 

0-p p
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Low Gain Regime: Qualitative Observation

*Plots are taken from talk slides by Peter Schmuser.
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The average energy of the electrons 
is right at resonant energy:
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The average energy of the electrons 
is slightly above the resonant energy:

 += 0

With positive detuning, there is 
net energy loss by electrons.
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Low Gain Regime: Derivation of FEL Gain

Change in radiation power density (energy gain per seconds per unit area):
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obtain the change in electric field amplitude: 
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Low Gain Regime: Derivation of FEL Gain
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(1)
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Low Energy Regime: Derivation of FEL Gain
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Low Energy Regime: Derivation of FEL Gain
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The gain is defined as the relative growth in radiation power:

Growth in the amplitude of radiation field:

Cubic in FEL length

As observed earlier, there is no gain if 
the electrons has resonant energy.
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High Gain Regime: Concept

1. Energy kick from radiation field +  
dispersion/drift -> electron density 
bunching; 

2. Electron density bunching makes more 
electrons radiates coherently -> higher 
radiation field; 

3. Higher radiation fields leads to more density 
bunching through 1 and hence closes the 
positive feedback loop -> FEL instability.

The positive feedback loop 
between radiation field and 
electron density bunching is 
the underlying mechanism 
of high gain FEL regime.

*The plots are for illustration only. The right plot 
actually shows somewhere close to saturation.
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1-D Model for cold beam without 
detuning
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Wave Equation
1-D theory and hence                     and  0/ = x 0/ = y

Wave equation for transverse vector potential:
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Wave Equation
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In order to relate the vector potential to the electric field, we use the Maxwell 
equation:

After neglecting the fast oscillation terms, we get the following relation between the 
current perturbation and the vector potential of the radiation field:

Finally, the relation between the radiation field and the current modulation is obtained:
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is normalized longitudinal location 
along wiggler,

                      is the 1-D Gain rate parameter

                         is called Alfven current

1-D High Gain FEL Equation for Cold Beam and 
Zero Detuning
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1D Gain Length
• At high gain limit, i.e.           , the radiation field is given by
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Solution for Cold Beam with Nonzero Detuning

The general solution of the ODE reads:
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Applying initial condition to get the coefficients

For                     and                              , the solution can be explicitly written as  ( ) extEE =0 ( ) ( ) 00''0' == EE
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For non-vanishing detuning, the differential equation becomes
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Low Gain Limit of High Gain Solution
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The normalization factor for 
high gain is different from 
that of low gain:
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Can we reproduce the previously obtained low gain solution by taking the proper limit of 
the high gain solution?

The high gain solution indeed give identical 
solution when the undulator is shorter than 
the gain length. But it also tell us what 
happens if the undulator is long and hence it is 
more general than the low gain solution.
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Bandwidth at High Gain Limit I
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It is sometimes hard to extract insights from the exact 
solution of the 3rd order polynomial equation for the 
eigenvalue. Therefore, it is useful to get the approximate 
solution which is simpler but gives accurate results for 
the region that we are interested in.  
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Bandwidth at High Gain Limit II
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After taking the approximate eigenvalue, the radiation field in frequency domain is

1D FEL bandwidth for radiation field:

1D FEL bandwidth for radiation power:
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Pierce Parameter
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Coherent Length
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Ĉ

( )ˆE C

Ĉ

t

( )E t

t

0z =

0z =

wz l=

wz l=
( )E t



t

Coherent length is the width of the radiation wave-packet generated by a delta-like excitation.
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FEL Gain for warm Beam with Lorentzian Energy 

Distribution

The eigenvalues are determined by : ( ) iCiq =++
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• FEL gain reduced substantially when the relative energy spread 
become comparable or larger than the Pierce parameter. 

If there is no initial modulation in 
the electron beam:
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is the number of electrons in 
a radiation wavelength.

is the ratio between 
coherent length and the radiation 
wavelength.

FEL Saturation I
Like any other amplification mechanism, the exponential growth of FEL radiation can not 
continue forever. One of the criteria  to determine the onset of saturation is when there is 
no electrons to be bunched further, i.e.                  , which happens to be the point where 
nonlinear effects starts to take over. 

0/ ~ 1n n

For FEL process starts from shot 
noise, i.e. SASE, the maximal gain 
can be derived as

0/ ~ 1n n

/c c optN L =

eM

( ) ( )0n n n  = +
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FEL Saturation II

d2

dẑ2
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:  cross section of the beam (and the radiation field) A

:  a numerical factor in the order of one.

There are other criteria which give similar results for the maximal Gain in SASE:

Hence the Pierce parameter is also 
called efficiency parameter.
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FEL Saturation III

• If we use the result that FEL typically saturates at 20 
power gain length, the FEL bandwidth at saturation is 
given by
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FEL bandwidth for radiation amplitude at saturation:

FEL bandwidth for radiation power at saturation:

Pierce parameter is roughly 
equal to the bandwidth of 
the FEL at saturation.
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3D Effects: Diffraction
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The Rayleigh length or Rayleigh range is the distance along the propagation direction of a 
beam from the waist to the place where the area of the cross section is doubled.
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The radius of the radiation at a given distance is given by

The size of the electron beam and the seeding radiation field optics have to be properly 
chosen so that the interaction efficiency between radiation fields and electrons can be 
optimized.

For a Gaussian radiation beam:

35



Three Dimensional Effects: 3D Gain

• In reality, the gain length will be longer than the 1D gain length due to diffraction, 
electron emittance, and electron beam energy spread. It is difficult to obtain a general 
analytical expression for the gain length with all these effects taken into account.

• The analytical approach typically involves expansion over a series of transverse modes.
• For the dominant transverse mode, there is a fitting formula derived by Ming Xie, which 

is typically of the accuracy of 10% compared with simulation results. 

Energy spread effects Electron emittance effects Diffraction effects

Ming Xie’s fitting formula for 3D gain length

36



Three-Dimensional Effects: transverse modes
Cylindrical coordinates, Laguerre-Gaussian modes Cartesian coordinates, Hermite-Gaussian modes
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