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Introduction |I: What is free electron lasers

* A free-electron laser (FEL), is a type of laser whose
lasing medium consists of very-high-speed electrons

moving freely through a magnetic structure, hence
the term free electron.

* The free-electron laser was invented by John Madey
in 1971 at Stanford University.

* Advantages:

v’ Wide frequency range
v Tunable frequency
v’ May work without a mirror (SASE)

* Disadvantages: large, expensive



Introduction Il: Applications and FEL facilities

* Medical, Biology (small wavelength and

short pulse are required for imaging

proteins), Military (~Mwatts)...
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 Operational FEL light sources worldwide (~20):

Free Electron Laser User Facilities Worldwide

LOCATION FACILITY NAME | WAVELENGTHS Acc. Type

RIKEN, JAPAN

SLAC, USA

DESY, Germany
ELETTRA, Italy

Osaka U., Japan
Radboud U. Netherlands
LURE-Orsay, France

Jefferson Lab., USA

SUT, Japan

FZ Rossendorf, Germany
UCSB, USA

PslI, Switzerland

DESY, Germany
Shanghai, China

Dalian, China

SACLA
LCLS
FLASH
FERMI
iFEL
FELIX
CLIO
Jlab FEL

FEL-SUT
FELBE
ITST

Swiss FEL
Euro-XFEL
SXFEL
DCLS

0.63-3A
1.2-154
4.1-45nm

4 - 100 nm

230 nm — 100 pum
25—420 um
3—-150 um

363 -438 nm
3.2-4.8 um

5-16 um
4—250 um

30 um—2.5 mm
1-70A
0.5-47 A
1.2-10 nm
50— 150 nm

NC Linac
NC Linac
SC Linac
NC Linac
NC Linac
NC Linac
NC Linac

SC Linac

NC Linac
SC Linac

electrostatic

NC Linac
SC Linac
NC Linac
NC Linac
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Introduction lll: FEL faC|I|t|es
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FEL User Facilities for Scientific Research



Introduction IV: Basic Setup

Planar undulator F
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Introduction V: different types of FEL

Mirror Undulator
FEL O.scnlat.or K= S 4[] 4] ] 4]t Radiation {I
(Low gain regime) eSS RERERE
Electron
Beam

B Master Laser Undulator
FEL Amplifier Beam d U4t 4] 4]t Radiation
(High gain regime) FITITITITIY
Electron
Beam
Undulator

SASE FEL
(High gain regime)

Radiation

Electron

Self-Amplified Spontaneous Emittion (SASE)

Beam



Unperturbed Electron motion in helical wiggler
(in the absence of radiation field)

,(x.y,2)=B, [ cos(k,z)x —sin(k,z)3 |

B
#( ) —~eVXB=—eviXB= —ev.B, [Cos(kuz)f/ * sin(kuZ)JAC]
(

d(mgv ) dv
n) mg e = = -ev,B, sin(k,z) —— 2 = mg—L = -ev_B, cos(k,z)
dt dt dt
g= 1 2 2 2 | Undulat t
— — v:\/v +2 +p o o ndulator parameter,
J1-v/c x oy z VEV, T vy | also called a_
dav . i ' eB I
=g g — ik, : KO v w
my 2 iev. B, (cos(kuz) zs1n(kuz)) =—iev B e | 2ome
d%%e dz d9%6 dve s : !Electron rotation angle
m7/E = Vd—a = —Iev, Bwe ‘= mVE =—lieB,e | in undulator:
- —_— - _I g, = K/g
7 — : .
\% ) — leB,, Ie"kuzldzl — ﬂe"k 2 = X e™Z xAssume the initial velocity of the electron
C mcy mcyk, 4 make the integral constant vanishing.
. cK .
vV, (Z) =— COS(k 7)X— sm k < ] v, = const. %(z)=[9(t,)dr, +%(z=0)
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Energy change of electrons due to radiation field

v, (z)= % cos(k,z)%— sin(kuz)ﬂ

Consider a circularly polarized electromagnetic wave (plane wave is an assumption for 1D
analysis, which is usually valid for near axis analysis) propogating along z direction

E (z,t)=E|cos(kz—wt)%+sin(kz—wt)3 | E =0
= E[cos(k(z—ct))fﬁ—sin(k(z—ct))ﬂ w=kc
Energy change of an electron is given by d_ — 17“ Y = _e‘l .EL
t

To the leading order, electrons move with constant velocity and hence z =V, (t - to)
d_E_%dE_V dEjdE_id_E
dt dtdz “dz dz v, dt Pondermotive phase:

d&é
d_z =—eE0. vicos(w) ~—el0 cos(l//) V=kz+ k(z - ct)

<




Resonant Radiation Wavelength

de =—eEl. coszw +k— kijzﬂ/fo}
dz v,

We define the resonant radiation wavelength such that
C (¢ 1
kw+ko_ko_:O:>IOZIwk__1)z S
vZ ZgZ

z

g2 e1-v2 /¢’ :1—(\/Zz+vi)/cz+vﬁ/c2 =g+ 29‘2(1+K2)

2
[ » IW(1+K ) KOeBWIW
FEL resonant frequency: 0 2g2 2pmc

At resonant frequency, the rotation of the electron and the radiation field is
synchronized in the x-y plane and hence the energy exchange between them is most
efficient.



Helicity of radiation at synchronization

The synchronization requires opposite helicity of radiation with respect to the electrons’

trajectories.
Electrons’ trajectories

-
& A (e)
alectron |
trajector 1
t o
11(1‘1) ", VL(tz)
»

by <<l <1

Radiation field observed by
b) electrons

v, (1)
‘—}l » - w,
\4 ‘t v -
y /:
i
X Electrons move slower than radiation

and hence see the radiation wave
slipping ahead. As a result, the
rotation direction of the radiation
field seen by an electron is the same
as its own rotation direction. 11



Longitudinal equation of motion

In the presence of the radiation field, the longitudinal equation of motion of an

electron read

d&

d_ = —eEHS COS(I//) VY= sz+ k(z - ct)
4
d 0]
—w =k +k—
iz T ()
| 1
~k, +k—w +(8—50)i—
vz(é’o) dé v,
E-E&
~k, th—— 2 (£-4&)
v, 50) v.e &
[ ap
d_z = —eEb, COS(W) Energy deviation:
= d 0]
—y=C+——P Detuning parameter:
dz y.c&,

&, 1s the average energy of the beam.

d 1 1

d 1 _

d€ v, " me’ Eﬁ_z_ mc® dy dy_ B

1 dy, d 1

Z

92: g dgz: g

: (1+K2) dg gz(1+K2)
di1__ 1 df 1) 1

dg. b 26°dg \ ¢?) B
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B o

C=k, +k Vz(go)




Low Gain Regime: Pendulum Equation

dP

o —eE0, cos(y)

< d’ eE0

d o [T vt cos(y)=0
—y=C+——P ¢ V6%

dZ ’}/ZC(S,O

We assume that the change of the amplitude of the radiation field, E, is negligible
and treat it as a constant over the whole interaction.

d? A . [2eE0.w N~ Z
+ = U=-——F—"— z=—
Y Hicos(y)=0 yic, I
2
Pendulum equation: dAZ (y+£j +ﬁsin[y+£) =0
dz 2 2




Energy deviation

Low Gain Regime: Similarity to Synchrotron Oscillation

FEL I Synchrotron Oscillation
Y is the angle between the transverse velocity
vector and the radiation field vector and hence . LNy sin(k,%,7);

ds~ °% ds C p,e

there is no energy kickfory=,0/2 |

Energy deviation

o p
2 2
Pondermotive phase, YV

2 .
) rasnly gl

N

+ —
dz’? 2

V=kz+ k(z - ct)




Low Gain Regime: Qualitative Observation

Energy deviation
Energy deviation

The average energy of the electrons

is right at resonant energy:
/,(1+K?) 2,1+ K?)
Io » > =V =% =
2g 2ﬂ*o

*Plots are taken from talk slides by Peter Schmuser.

The average energy of the electrons
is slightly above the resonant energy:

Y=y, +Ay

With positive detuning, there is
net energy loss by electrons.

15



Low Gain Regime: Derivation of FEL Gain

Change in radiation power density (energy gain per seconds per unit area):

AIl, = cs,(E,, + AE) —cg,E2

ext ext

~ 2C¢g,E,, AE

ext

Energy deviation at entrance

Average change rate in electrons’ energy per unit beam area: /

Pondermotive phase at entrance

i

_ Jo<P> *The average, <...>, is over all w Yo
All, =——+ _
e electrons in the beam. (P(@))= [ dR, [du, (R, )P(Ry, w6, 2)
—00 0

Assuming radiation has the same cross section area as the electron beam, we
obtain the change in electric field amplitude:

AT, + ATT, = 0= | AE = ——biPs
2cg,E, .

ext

3

dr =—¢E0Q, cos(y)

* = <P>:—eE83<iCOS[W(2)]d2>

—y=C+ P
&z’ yicé,




Low Gain Regime: Derivation of FEL Gain

2
FW‘FOCOS(//:O
VA

A
w(2)=w(0)+y'(0)2 - OJ dilj cosy(Z, )dz, (1)
0 0

Assuming that all electrons have the same energy and uniformly distributed in the

Pondermotive phase at the entrance of FEL: P,=0 and f(:,//o)=2i
T

The zeroth order solution for phase evolution is given by ignoring the effects from
FEL interaction:

P _ —eE0Q, cos(y ) r W(z) =Wyt C2

dz d A .

d ® r = —AW:C:% C ECIW
—y=C+ P dz - A

AR | v(0)=c

Inserting the zeroth order solution back into eq. (1) yields the 1%t order solution:

w(2)=v,+C2+Ap(y,,2) Ay, 2)=—a[ d2, [ cosly, + C2, 2,

O'.)'\b

dz,

O Sy RV



Low Energy Regime: Derivation of FEL Gain
Ay(p,,2)= —lj:[di:fcos[y/o + cizz]dz2

N Cz A
- —%“sin(% +x, )dx, — CZsin ‘//o} = %[cos(wo +(§2)— cosy, +Cisin Wo]

1
(P)= —eEIW65<I cos[z//o +C2+Ay(p,, 2)]d2> <—— Average energy loss of electrons
0

1

1
[sinly, + G2 sin(Ay (v, 2))d2> _ eE@SIW< [ cosly, +CeJeos(ay (y, 2))d2>
0 0
1

1 2 .
[ vt hinks, ) S0 o Tooever,
° I A ZE -0 o - <ICOS[WO + éi]sin[://o + Ci]d2> =0

_ %%jdz{éz cos(éi)Tsinzn//od v, —::,in(éz)zfcos2 w,d ‘//o}
2r C*y 0 0

:eEHSIW<

zeEHS|W<

——eEal, [ 1-Ssiné —cosé
c’l 2



Low Energy Regime: Derivation of FEL Gain

Growth in the amplitude of radiation field: i— |v2v9Eext950)
ji (P i 020 I3E S . ~ yleymc?
AE = — IofP) = 72]0923(0 W —ext ?3 1—ESII’IC—COSC
2ce,E e cysy 1, C 2
3
| — Adrgme
The gain is defined as the relative growth in radiation power: A e
E..+AEY —E2 2AE A
g = ( = EZ) 2 x =T f(C) As observed earlier, there is no gain if
ext ext the electrons has resonant energy.
Cubicin FEL length |
. 2 3/ 0.1
T = 272]093 2 IW

0.05

C7/z27/ |\

) 2 . C . 4
flC)]=—|1-cosC ——=sinC .05
¢)-G[r-cosc-Sanc|
d sinz(élz) B | | | | |
dé éZ 15 -10 5 0 5 10 15

Normalized detuning é

Normalized gain
=

f©)

=2




High Gain Regime: Concept

1. Energy kick from radiation field + 3. Higher radiation fields leads to more density
dispersion/drift -> electron density bunching through 1 and hence closes the
bunching; positive feedback loop -> FEL instability.

A= >
~

@(rad) & (rad)

*The plots are for illustration only. The right plot
actually shows somewhere close to saturation.

2. Electron density bunching makes more
electrons radiates coherently -> higher oy v
radiation field; s 5 s it

4.| }'-'w )17 ;—h.l«l— ‘E‘:r NT

.-\.r"\.rl'\.'lr
£

=~ A1 [t J_-"'-_-_ ..'{-" o u '\.-'
d Yope e ..f'*-,”.-’ r‘ _ I:'ncahef'em . JN?-
E|« N,
T2
Icoherem o "Ne
I._

s v .
) .
» el
. F
~ ‘
1 <sh
v N
' '
A

.
S ——

The positive feedback loop
between radiation field and
electron density bunching is
the underlying mechanism
of high gain FEL regime.
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1-D Model for cold beam without
detuning

B(Z):<eil//>:%JZN;eil//, D(Z)=<Peiw>=%ij;Pje_i"’i

Assumingthat C =0 , itfollows %W =C+ }/;EO P= 7;;50 P
d ./ ., d W _ W
—B(z)=-I e_"//_ = —I| e_WP = —| D(z
R 1 e Tl
dP
— ——efE
-+ = (z)cos(y)

= D(z)= <eiw d P> —j <e“”P iw> ~ <e“” % P> = —<e“'”eE9S cos(y/)> ~ —%e@SE

dz dz
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Wave Equation

1-D theory and hence 9/0x=0 and 9/oy =0

w=k,z+k(z—-ct)

o G

Wave equation for transverse vector potential: po — 7 o =—1,], (1)
Transverse current perturbation: J ), = —(VX + ivy)jZ =g, (2)

vV

z

- cK A . N
We seek the solution for vector potential of the form: VJZ):T[COS(kuZ)x—Sln(kuZ)y]

Ay,y(Z,t) _ R,y(Z)eiw(Z/C_t) n A('y*(Z)e_iw(Z/C_t) (3)

Inserting eq. (2) and (3) into eq. (1) yields
eia’(Z/c‘t) ZI_CO g AX + 8_2 A>< +CC.=—u0 COS(kWZ) - Multiplying both sides by e*~
c ozl A 0z° ,&y = b _Sin(sz) 2 and neglecting terms proportional

fast over the FEL (same as the

2io 0 (Au,), 2 (A ||l e re® ) T
¢ 0z\ Ay, ) 02°( Ay, 2 lie™ —jekwe N7

to ") since they will change

. . . k
1. Ignoring fast oscillating term ~ g

2. Ignoring second derivative by assuming that the variation of :&X
is negligible over the optical wave length.



Wave Equation

After neglecting the fast oscillation terms, we get the following relation between the
current perturbation and the vector potential of the radiation field:

a ~ Cll’lONgs - iy 8 -~ /LlONces R 1
_ = e — - Ze
O R = BN oy DR, N oy
In order to relate the vector potential to the electric field, we use the Maxwell
equation: . - - 5
VXE+2_?:O:VX(E+Z_?j:O:(E+Z_?j:§¢: E,, =- 'g‘xt’y
\ a

. ) _q 9 _
)ela)(Z/C—t):| 1D: &—0, ay_0

= E, +iE, = Ee"!¥*Y) = 5[( 0« TR

- _a ot,x ot,y

—~E = ia)( gt’X i gt,y) I'El(z,t): E[cos(k(z—ct))>2+sin(k(z—ct))ﬂ

Finally, the relation between the radiation field and the current modulation is obtained:

2 2
iE: ,w(i i 0 i ): _ NGO, <jze—iy/>: ec’Nu,6. PG ni,0, .
dz dz 7 dz 2 2V

. )
Ay
|

- ec o ecB
eV V= — Qe V= _
() e v n=NIV
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1-D High Gain FEL Equation for Cold Beam and

Zero Detuning

C7;
4 D= —leé’SE
dz 2
d - _ec’nud, 3
dz 2

d’ .

dz
2 =17 is normalized longitudinal location
along wiggler,

. 0 1/3
I {ﬂ]o?a)} is the 1-D Gain rate parameter
C}/zylA

_ 4zg,mc’

l is called Alfven current

A=€°%=—+Ii=- +— Growing mode

«— Damping mode

A= 2=-1  «—  Oscillating mode



1D Gain Length
* At high gain limit, i.e. Z>>1, the radiation field is given by
E(2)~Be™ =B, exp{fl‘z}exp[i %Fz}

and the radiation power IS A cross section of the radiation field

P(2)= goc‘ E(i)Z‘A = £,0|B,| exp(\@Fz): £,C|By|’ Aexp[l_zj
G

and the 1-D power gain length is

Pierce Parameter

A =7/22FC: r

1
L = = L /O

2L = 2 __ A
© 3 272\@,0

1-D amplitude gain length is  Lg, =



Solution for Cold Beam with Nonzero Detuning

w

For non-vanishing detuning, the differential equation becomes  C=k, +k—Tg)
d’ 2 d? 2, d : A
—E(2)+2iC— E(2)-C*—=E(2)=iE(2 ¢=C/T
d23 ( ) dz\Z ( ) dz\ ( ) ( ) 1 | | | | | | |
—— mode 1 — mode 1 \
w -++++ mode 2 vreer mode 2 ‘\
The general solution of the ODE reads: = [ Rels,;) . | =% \ Im(5)°
3 ]
E(2)=> B, g
k:l E '-‘ '.‘l .
A +2CH-C* A= B
Applying initial condition to get the coefficients Reeeddome
EQ0)) (1 1 1YB, B) (1 1 1) E®)
E'0)|=|4 4 4|B,|= B,|=|4 4, 4| |E0)
n 2 2 2 [N}
E"(0)) \& % Z\B B,) \2 2 2)|E"0)

For E(0)=E,, and E'(0)=E"(0)=0, the solution can be explicitly written as

; 2™ AAe™ e }
E(z)=E
2) ext{(zl o) Uy 2Ny =) (s~ 2a Wy~ )




Low Gain Limit of High Gain Solution

Can we reproduce the previously obtained low gain solution by taking the proper limit of
. . S
the high gain solution- 2ot

= =2r°3
2_E2 N N . 2 . C . A C7/z27 I
Y S L Y I
Eext Eext G CI =C|W
=2 2 ) 2, I 2
g (A ): BP Bl | A4 A At | 1 The normalization factor for
T E2, (A=) A4 -24) (L= -4) (A-4)4 —12)‘ high gain is different from
o3 f (é) [ —IT that of low gain:
= W w w ~ o ~
" ¢ =c/r=cl /i, =¢ I,
R . - 2 A A N\ 2
A ﬂilw /12|w }‘GIW
Gl Ll aaetaret | amet [ peab (8] 1m
203 || =)= ) (=& d—4) (= 4)A—4,) Lo U
fh (él)’ fI (él) . . . . . . .
The high gain solution indeed give identical
fw —0.02 M SN solution when the undulator is shorter than 0.20 — N (C')
ool | the gain length. But it also tell us what 0.15 R
) \  happens if the undulator is long and hence it is l, =2
005 f \  more general than the low gain solution.
T5 ~—=10 \-5 r s N0 =T N
i I "_"-s-\_. S
—00§ | =15 =10 10 15
—D.-’{D-
/ A -040
/ fl (CI) /V
-0.15

-0.15
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Bandwidth at High Gain Limit |

It is sometimes hard to extract insights from the exact
solution of the 3™ order polynomial equation for the
eigenvalue. Therefore, it is useful to get the approximate
solution which is simpler but gives accurate results for
the region that we are interested in.

A +2C12-CA=i

A=a,+a,C+a,C?

Growth rate

0.4

—— Exact

— Approx.

Re(4)

f (é)z(ao+a1(f+a2(§2)3+2i(f(a0+a1(f+a2(52)2—éz(ao+a1(f+a2(fz)—i =0

f(é)z fo(a.8,,8,)+ f, (2, a,8,)C+f,(a,a,a,)C* =0

Zeroth order equation: f(0)

d ~
First order equation: e f (C)

Second order equation: dcclfz

J3 .1

:O:> a0:7+§

=0=> __-Z

¢=0 %= I3
f(C) =0= a--—+ ¥3_;1
o ©oo9l2 2

Exp[10xRe(s,)]

Reduced detune

x10° T

— Exact
—— Approximate

2=10 -




Bandwidth at High Gain Limit Il

After taking the approximate eigenvalue, the radiation field in frequency domain is

2 . o Rs L R2sT]. C? 1
E(C). exp[aoz+a1Cz+a2C z]. exp{—2 2}:%:\/

o, 2Re(a,)2
J3 1 @
Re(a)=-X 5.=3 10w =p- 2
. - s . 2 2 I 2,0
1D FEL bandwidth for radiation field: o,=l2Cy,0, =6Cy, |—= =3,
J3z \@sz
1D FEL bandwidth for radiation power: o. = O _ W 3\/510
A \/E ’ kWZ Pierce Parameter

v Te
p=/“

a
29




Coherent Length

(@R

Coherent length is the width of the radiation wave-packet generated by a delta-like excitation.

_ W’ _ t* \a\ Y 2k,z 2
E(a)) exp{_ZGz}: E(t). exp{_ZJZ} ndll i pRe(a 3kC p\/— {o*

0] t




FEL Gain for warm Beam with Lorentzian Energy

Distribution
T I T T I T
— = le-4 A : : — g =0
—q=02 F(P): L; o Re(2)
~ | q=04 | mq . P
% 1 — =1 1+ 5 %
s E-B 2
/ IR
% &
2 Pierce Parameter g
AN :
)
—/4‘—/ A \=¥\ yle
O,4 ) 0 2 4 p -
@ 4 -2 0
Relative energy deviation / Rho Reduced detune C

o N & d? .2 2 d :
If th tial modulat 5 0 j 7 ) = A
ere is no initial modulation in E(Z)+2( q)d ( )+(IC+Q) EE(z)_|E(z)

the electron beam: dz3

The eigenvalues are determined by : /1(/1 +qg+ i(f)2 =

* FEL gain reduced substantially when the relative energy spread
become comparable or larger than the Pierce parameter.

31



FEL Saturation |

Like any other amplification mechanism, the exponential growth of FEL radiation can not
continue forever. One of the criteria to determine the onset of saturation is when there is
no electrons to be bunched further, i.e.dn/n, ~1, which happens to be the point where
nonlinear effects starts to take over.

n(l’”) =Ny +on (l/j) For FEL process starts from shot
noise, i.e. SASE, the maximal gain
can be derived as

D

>

5”/“0 ~1 :} & max S

N, =L,/ 4, is the ratio between
coherent length and the radiation
wavelength.

Log(radiation power)

M _ is the number of electrons in

e

undulator distance a radiation wavelength.
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FEL Saturation |l

There are other criteria which give similar results for the maximal Gain in SASE:

&Y Eq

4

A cross section of the beam (and the radiation field)

7y . anumerical factor in the order of one.

power A

(wiggler length’

“—-20Lg—

Saturation Length ~ 20 L g

2
d (y pj+ﬁsin(y+§j:0

/\2 +_
dz 2
Ji [eEo 1
Qp:—: > ~ :\/§F
l, 7,cE  Lg
Psat = EOCEsatZA: Z'P‘% Ie

Hence the Pierce parameter is alsg3
called efficiency parameter.



FEL Saturation Il

* If we use the result that FEL typically saturates at 20
power gain length, the FEL bandwidth at saturation is
given by

= ——— =~ 3w \/ 2P L. = 1 __A
w,sat 0 == -
\/gszsat \/—k 20 LG G \/§F 472-\/§p

FEL bandwidth for radiation amplitude at saturation:

o)

/ 2p i a
w,sat — 3&) ~ 1 . 8
Wy : \/§kw25at g

FEL bandwidth for radiation power at saturation:

o Pierce parameter is roughly
At _ Oosat _ =+0.90~ p| equal to the bandwidth of
Wy \/_a)o the FEL at saturation.




3D Effects: Diffraction
\ |
= w(z)

\\\‘ . b
~
I‘"\\___ o
N2 W, w, I

® »Z

_—

B S ’
a® - oy
/ Z R \

2
The radius of the radiation at a given distance is given by W(z) = W, 1+[ij
ZR

The Rayleigh length or Rayleigh range is the distance along the propagation direction of a
beam from the waist to the place where the area of the cross section is doubled.

2

_ W,
N =

A

opt

For a Gaussian radiation beam:

The size of the electron beam and the seeding radiation field optics have to be properly

chosen so that the interaction efficiency between radiation fields and electrons can be

optimized. >



Three Dimensional Effects: 3D Gain

* Inreality, the gain length will be longer than the 1D gain length due to diffraction,
electron emittance, and electron beam energy spread. It is difficult to obtain a general
analytical expression for the gain length with all these effects taken into account.

* The analytical approach typically involves expansion over a series of transverse modes.

* For the dominant transverse mode, there is a fitting formula derived by Ming Xie, which
is typically of the accuracy of 10% compared with simulation results.

Ming Xie’s fitting formula for 3D gain length Lw — Lm (1 + A)
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Three-Dimensional Effects: transverse modes

Cylindrical coordinates, Laguerre-Gaussian modes Cartesian coordinates, Hermite-Gaussian modes
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FIG. 9. (Color) Evolution of the LCLS transverse profiles at different z locations (courtesy of Sven Reiche, UCLA).
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