PHY 554. Homework 1 solutions

Handed: September 6
Return by: September 13
HW 1.1 (3 points): Find available energy (so called C.M. energy) for a head-on collision of electrons and protons in two electron-hadron collisions:
(a) CEBAF collides 12 GeV electrons with protons at rest (the rest energy of proton is 0.938257 GeV);
(b) LHeC ep plans to collide 60 GeV electrons with 7 TeV protons.

Solution: we should use formula for available c.m. energy:

$$
\begin{equation*}
E_{c m} \equiv M c^{2}=c \sqrt{P_{i} P^{i}}=\sqrt{E^{2}-(c \cdot \vec{p})^{2}} ; E=E_{1}+E_{2} ; \vec{p}=\vec{p}_{1}+\vec{p}_{2} \tag{1}
\end{equation*}
$$

(a) Proton has zero momentum and energy of 0.938257 GeV and total energy is $\mathrm{E}=12.938257 \mathrm{GeV}$. Momentum of electron scaled by speed of light, $p c$, deviates from electron's energy by 11 eV - in other words, it is is the same as its energy up to the $10^{\text {th }}$ digit... Putting numbers in the exact formula gives $\mathrm{E}_{\mathrm{cm}}=4.837 \mathrm{GeV}$. Approximate formula for beam heating target at rest that we derived in Lecture 1

$$
E_{c m} \equiv M c^{2} \cong \sqrt{2 E_{1} \cdot m_{2} c^{2}}
$$

gives an approximation $\mathrm{fE}_{\mathrm{cm}} \sim 4.745 \mathrm{GeV}$, which is 2% lower.
(c) It is also true that $p c$ for 60 GeV electrons is practically indistinguishable from its energy (till $12^{\text {th }}$ digit!). The pc of 7 TeV protons is also very close to $7 \mathrm{TeV}-$ difference is only in $9^{\text {th }}$ digit! Hence, total energy $\mathrm{E}=(7+0.06) \mathrm{TeV}$ and total momentum $\mathrm{pc}=(7-0.06) \mathrm{TeV}$, where we took into account that electrons and protons are moving in opposite direction! Putting numbers in exact formula (1) gives $\mathrm{E}_{\mathrm{cm}}=1.296 \mathrm{TeV}$.

HW 1.2 (2 points): Electron ion collider (EIC) will be built in Brookhaven National Lab to collider 18 GeV electrons with 275 GeV protons and $100 \mathrm{GeV} / \mathrm{u}$ heavy ions. It will be located in RHIC tunnel with circumference of 3834 m .
(a) 1 point: What will be bending radius of 275 GeV protons in EIC dipole magnets with magnetic field of 3.8 T ?
(b) 1 point: What magnetic field is required to turn 18 GeV electrons with the same radius?
Solution: we should use formula connecting beam rigidity, strength of magnetic field and the bending radius: :

$$
B \rho=\frac{p c}{e} \Leftrightarrow\left\{\begin{array}{c}
B \rho[k G s \cdot \mathrm{~cm}]=\frac{p c[\mathrm{MeV}]}{0.299792458} \cong \frac{p c[\mathrm{MeV}]}{0.3} \\
B \rho[T \cdot m]=\frac{p c[\mathrm{GeV}]}{0.299792458} \cong \frac{p c[\mathrm{GeV}]}{0.3} \\
B \rho[T \cdot \mathrm{~km}]=\frac{p c[\mathrm{TeV}]}{0.299792458} \cong \frac{p c[\mathrm{TeV}]}{0.3}
\end{array}\right\}
$$

(a) The $p c$ of 275 GeV protons is 274.998 GeV (again, very close to the energy!) and with 3.8 T magnetic field

$$
\rho[\mathrm{m}]=\frac{p c[\mathrm{GeV}]}{0.299792458 \cdot B[T]}=241.4 \mathrm{~m}
$$

(b) The $p c$ of 18 GeV electrons is again parctically 18 GeV . Hence magnetic field requred to bet at radius of 241.4 m is 0.249 T . It can be calcuated from the formula

$$
B[T]=\frac{18[\mathrm{GeV}]}{0.299792458 \cdot 241.4[\mathrm{~m}]}=0.249 \mathrm{~T}
$$

or simply scaled proportinally to the rigidity of the beams

$$
\frac{B_{e}}{B_{p}}=\frac{p c_{e}}{p c_{p}}=0.0655
$$

HW 1.3 (2 points): For a classical microtron with orbit factor $\mathrm{k}=1$ and energy gain per pass of 1.022 MeV and operational RF frequency $1.5 \mathrm{GHz}\left(1.5 \times 10^{9} \mathrm{~Hz}\right)$ find required magnetic field. What will be radius of first orbit in this microtron?
Hint: Note that rest energy of electron with $\gamma=1$ is 0.511 MeV . This is energy gain per pass will define available n numbers in eq. (2.6)

Solution: By design, the election's energy gain on the RF cavity is twice of the its rest energy - it means that electron at the first orbit has $\gamma=3$ and energy of 1.533 MeV . It also means that on the second orbit electrons will have $\gamma=5, \gamma=7$ at the third orbit, etc... With $\mathrm{k}=1$ and integer γ and n, the resonance conditions (2.6)

$$
\frac{2 \pi m c \cdot f_{R F}}{e B} \cdot \gamma_{n}=n ;
$$

can be satisfied only if $j=\frac{2 \pi m c \cdot f_{R F}}{e B}$ is an integer. Let's assume that $j=1$, then n takes numbers $3,5,7$.. for first second and third orbits. For $j=2, n$ starts at 6 and gain 4 at each turn.... It allows us to define required magnetic field

$$
B=\frac{2 \pi m c \cdot f_{R F}}{j \cdot e}=\frac{1}{j} \cdot \frac{m c^{2}}{e} \cdot \frac{2 \pi f_{R F}}{c}
$$

with $m c^{2}=0.511 \mathrm{MeV}, \frac{m c^{2}}{e}$ gives us rigidity of $1.702 \mathrm{kGs} \mathrm{cm} . \lambda_{R F}=\frac{c}{2 \pi f_{R F}}=3.18 \mathrm{~cm}$ is the RF wavelength divided by. 2π results in

$$
B[k G s]=\frac{1}{j} \cdot \frac{1.703[\mathrm{kGs} \cdot \mathrm{~cm}]}{\lambda_{R F}[\mathrm{~cm}]}=\frac{0.536}{j} \mathrm{kGs}
$$

At $E=1.533 \mathrm{MeV}$ electrons are still not moving at the speed of light and pc is slightly different from E :

$$
p c=\sqrt{E^{2}-\left(m c^{2}\right)^{2}}=1.445 \mathrm{MeV}
$$

which correspond to radius of the trajectory of

$$
\rho[\mathrm{cm}]=\frac{p c[\mathrm{MeV}]}{0.299792458 \cdot B[\mathrm{kGs}]}=j \cdot 9 \mathrm{~cm}
$$

HW 1.4 (5 point): Let's first determine an effective focal length, F, of a paraxial (e.g. small angles!) focusing object (a black-box) as ratio between a parallel displacement of trajectory at its entrance to corresponding change of the angle at its exit (see figure below):

$$
F=-\frac{x}{x^{\prime}} ; x^{\prime} \equiv \frac{d x}{d z}
$$

see figure below for

Let consider a doublet of two thin lenses: a focusing (F) and defocusing (D) lenses with equal but opposite in sign focal length F with center separated by distance L as in Fig. 1.
(a)

(b)

Fig.1. Two combinations of a doublet: $F D$ and $D F$.

1. (3 points) Show through a calculation of the ray trajectory that the focal lengths of $F D$ and $D F$ doublets are equal and given by following expression:

$$
F_{e f f}=\frac{F^{2}}{L}
$$

2. (2 points) The ray (trajectory) parallel to the axis is entering the FD or DF system of lenses. Using you calculation of the trajectories in $F D$ and $D F$ doublets, determine location of to the ray crossing the axis and find their difference between $F D$ and $D F$ doublets. Since a quadrupole focusing in horizontal plane is defocusing in vertical plane - and visa versa by solving this your find astigmatism of a doublet built from two quadrupoles, i.e. difference between locations of the focal planes for horizontal and vertical direction of motion.
P.S. Definition (picture) of thin lens:

(a)

(b)

Solution: In both cases we start from initial conditions

$$
x=x_{o} ; x^{\prime}=0
$$

and apply following transformations:

$$
\begin{aligned}
& \text { Flens : } x_{o u t}=x_{i n} ; x_{o u t}^{\prime}=x_{i n}^{\prime}-\frac{x_{i n}}{F} \\
& \text { Dlens : } x_{o u t}=x_{i n} ; x_{o u t}^{\prime}=x_{i n}^{\prime}+\frac{x_{i n}}{F} \\
& \text { Drift }: x_{o u t}=x_{i n}+L x_{i n}^{\prime} ; x_{o u t}^{\prime}=x_{i n}^{\prime}
\end{aligned}
$$

For FD case is gives us

$$
\begin{align*}
& x_{1}=x_{0} ; x_{1}^{\prime}=-\frac{x_{0}}{F} \rightarrow x_{2}=x_{0}-L \frac{x_{0}}{F} ; x_{2}^{\prime}=-\frac{x_{0}}{F} \rightarrow \\
& x_{3}=x_{0}-L \frac{x_{0}}{F} ; x_{3}^{\prime}=-\frac{x_{0}}{F}+\frac{1}{F}\left(x_{0}-L \frac{x_{0}}{F}\right)=-L \frac{x_{0}}{F^{2}} ; \tag{1}
\end{align*}
$$

and for DF case

$$
\begin{align*}
& x_{1}=x_{0} ; x_{1}^{\prime}=+\frac{x_{0}}{F} \rightarrow x_{2}=x_{0}+L \frac{x_{0}}{F} ; x_{2}^{\prime}=+\frac{x_{0}}{F} \rightarrow \\
& x_{3}=x_{0}+L \frac{x_{0}}{F} ; x_{3}^{\prime}=+\frac{x_{0}}{F}-\frac{1}{F}\left(x_{0}+L \frac{x_{0}}{F}\right)=-L \frac{x_{0}}{F^{2}} ; \tag{2}
\end{align*}
$$

with x_{3}^{\prime} being the angle at the exit of the "black box" and x_{o} being the postion at its entrance, the answer for the first question is coming from $x_{3}^{\prime}=-L \frac{x_{0}}{F^{2}}$ for both FD and DF cases.
The location of the ray crossing the z -axis coming from dividing the position at the exit of the second lens by the angle and adding L (distance from the starting point):

$$
\begin{align*}
& F: Z=L-\frac{x_{3}}{x_{3}^{\prime}}=L+\frac{F^{2}}{L}\left(1-\frac{L}{F}\right)=L-F+\frac{F^{2}}{L} \\
& D: Z=L-\frac{x_{3}}{x_{3}^{\prime}}=L+\frac{F^{2}}{L}\left(1+\frac{L}{F}\right)=L+F+\frac{F^{2}}{L} \tag{3}
\end{align*}
$$

Hence, the astigmatism of FD set is equal to 2 F .

