
PHY 554. Homework 1 solutions 
 
Handed: September 6 
Return by: September 13 
 
HW 1.1 (3 points): Find available energy (so called C.M. energy) for a head-on collision 
of electrons and protons in two electron-hadron collisions: 
 

(a) CEBAF collides 12 GeV electrons with protons at rest (the rest energy of proton is 
0.938257 GeV); 

(b) LHeC ep plans to collide 60 GeV electrons with 7 TeV protons. 
 
 
Solution: we should use formula for available c.m. energy: 

  (1) 
(a) Proton has zero momentum and energy of 0.938257 GeV and total energy is 

E=12.938257 GeV. Momentum of electron scaled by speed of light, pc,  deviates 
from electron’s energy by 11 eV – in other words, it is is the same as its energy up 
to the 10th digit… Putting numbers in the exact formula gives Ecm=4.837 GeV. 
Approximate formula for beam heating target at rest that we derived in Lecture 1  

 
gives an approximation f Ecm~ 4.745 GeV, which is 2% lower. 

(c)  It is also true that pc for 60 GeV electrons is practically indistinguishable from its 
energy (till 12th digit!). The pc of 7 TeV protons is also very close to 7 TeV – 
difference is only in 9th digit! Hence, total energy E=(7+0.06) TeV and total 
momentum pc=(7-0.06) TeV, where we took into account that electrons and 
protons are moving in opposite direction! Putting numbers in exact formula (1) 
gives Ecm=1.296 TeV. 

 
HW 1.2 (2 points): Electron ion collider (EIC) will be built in Brookhaven National Lab 
to collider 18 GeV electrons with 275 GeV protons and 100 GeV/u heavy ions. It will be 
located in RHIC tunnel with circumference of 3834 m. 
 

(a) 1 point: What will be bending radius of 275 GeV protons in EIC dipole magnets 
with magnetic field of 3.8 T?  

(b) 1 point: What magnetic field is required to turn 18 GeV electrons with the same 
radius? 

Solution: we should use formula connecting beam rigidity, strength of magnetic field and 
the bending radius:  : 

Ecm ≡ Mc
2 = c PiP

i = E2 − c ⋅ !p( )2 ;E = E1 + E2;
!p = !p1 +

!p2

Ecm ≡ Mc
2 ≅ 2E1 ⋅m2c

2



  
(a) The pc of 275 GeV protons is 274.998 GeV (again, very close to the energy!) and 

with 3.8 T magnetic field  

 

(b) The pc of 18 GeV electrons is again parctically 18 GeV. Hence magnetic field 
requred to bet at radius of 241.4 m is 0.249 T. It can be calcuated from the 
formula  

 

or simply scaled proportinally to the rigidity of the beams 

 

 
HW 1.3 (2 points): For a classical microtron with orbit factor k=1 and energy gain per 
pass of 1.022 MeV and operational RF frequency 1.5 GHz (1.5 x 109 Hz) find required 
magnetic field. What will be radius of first orbit in this microtron? 
Hint: Note that rest energy of electron with γ=1 is 0.511 MeV. This is energy gain per pass 
will define available n numbers in eq. (2.6) 
 
Solution: By design, the election’s energy gain on the RF cavity is twice of the its rest 
energy – it means that electron at the first orbit has γ=3 and energy of 1.533 MeV. It also 
means that on the second orbit electrons will have γ=5, γ=7 at the third orbit, etc... With 
k=1 and integer γ and n, the resonance conditions (2.6)  

 

can be satisfied only if is an integer. Let’s assume that j=1, then n takes 

numbers 3,5,7.. for first second and third orbits. For j=2, n starts at 6 and gain 4 at each 
turn….  It allows us to define required magnetic field  
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with =0.511 MeV,  gives us rigidity of 1.702 kGs cm.  = 3.18 cm 

is the RF wavelength divided by.  results in  

 

At E=1.533 MeV electrons are still not moving at the speed of light and pc is slightly 
different from E:  

 
which correspond to radius of the trajectory of  

 

 
HW 1.4 (5 point): Let’s first determine an effective focal length, F, of a paraxial (e.g. 
small angles!) focusing object (a black-box) as ratio between a parallel displacement of 
trajectory at its entrance to corresponding change of the angle at its exit (see figure below): 

 

see figure below for  
 

 
Let consider a doublet of two thin lenses:  a focusing (F) and defocusing (D) lenses with 
equal but opposite in sign focal length F with center separated by distance L as in Fig. 1.  

 
Fig.1. Two combinations of a doublet: FD and DF. 
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1. (3 points) Show through a calculation of the ray trajectory that the focal lengths of FD 
and DF doublets are equal and given by following expression: 

 

2. (2 points) The ray (trajectory) parallel to the axis is entering the FD or DF system of 
lenses. Using you calculation of the trajectories in FD and DF doublets, determine location 
of to the ray crossing the axis  and find their difference between FD and DF doublets. Since 
a quadrupole focusing in horizontal plane is defocusing in vertical plane - and visa versa –
by solving this your find astigmatism of a doublet built from two quadrupoles, i.e. 
difference between locations of the focal planes for horizontal and vertical direction of 
motion. 
 
P.S. Definition (picture) of thin lens: 

 
 

Solution: In both cases we start from initial conditions  

 
and apply following transformations: 

 

For FD case is gives us 

Feff =
F 2

L

  x = xo; ′x = 0;

  

F lens : xout = xin; ′xout = ′xin −
xin

F
;

Dlens : xout = xin; ′xout = ′xin +
xin

F
;

Drift : xout = xin + L ′xin; ′xout = ′xin;



    (1) 

and for DF case 

    (2) 

with  being the angle at the exit of the “black box” and being the postion at its 

entrance, the answer for the first question is coming from  for both FD and DF 

cases. 
The location of the ray crossing the z-axis coming from dividing the position at the exit of 
the second lens by the angle and adding L (distance from the starting point): 

    (3) 

Hence, the astigmatism of FD set is equal to 2F. 
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