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1.2 Particles in the 4-potential of the EM field.  
The EM field propagates with the speed of light, i.e., it is a natural product of relativistic 4-D space-time; 
hence, the 4-potential is not an odd notion!  
 
In contrast with the natural use of the interval for deriving the motion of the free relativistic particle, there 
is no clear guideline on what type of term should be added into action integral to describe a field. It is 
possible to consider some type of scalar function A(xi )ds∫  to describe electromagnetic fields, but this 
would result in wrong equations of motion. Nevertheless, the next guess is to use a product of 4-vectors 
Aidxi , and surprisingly it does work, even though we do not know why? Hence, the fact that 

electromagnetic fields are fully described by the 4-vector of potential   

� 

Ai = (A0,
! 
A )  must be 

considered as an experimental fact! 
 Nevertheless, it looks natural that the interaction of a charge with electromagnetic field is 
represented by the scalar product of two 4-vectors with the −e / c  coefficient chosen by convention: 

Sint = −
e
c

Ai

A

B

∫ dxi ;   A
i ≡ (Ao,

! 
A ) ≡ (ϕ,

! 
A )      (31) 

where the integral is taken along the particle’s world line. A charge e  and speed of the light c are moved 
outside the integral because they are constant; hence, we use the conservation of the charge e  and 
constancy of the speed of the light ! 
IT IS ESSENTIAL THAT FIELD IS GIVEN, SINCE WE ARE CONSIDERING A PARTICLE INTERACTING WITH A 
GIVEN FIELD. 

Relativism -> E&M 
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Turning our attention back to the Least-Action Principle and Hamiltonian Mechanics 
The standard presentation of 4-potential is  

  A
i ≡ (A0 ,

! 
A ) ≡ (ϕ,

! 
A ) ;       (32) 

where ϕ  is called the scalar potential and   
! 
A  is termed the vector potential of electromagnetic field. 

Gauge Invariance. As we discussed earlier the action integral is not uniquely defined; we can add to it an 
arbitrary function of coordinates and time without changing the motion: 

� 

′ S = S + f (xi) . This corresponds 
to adding the full differential of f in the integral  (31)  

� 

′ S = −mcds −
e
c

Aidxi + dxi∂
i f

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

A

B

∫ .  

This signifies that the 4-potential is defined with sufficient flexibility to allow the addition of any 4-

gradient to it (let us choose 

� 

f (xi) =
e
c
g(xi)) 

� 

′ A i = Ai −∂ ig(xi) = Ai −
∂g
∂xi

;       (33) 

without affecting the motion of the charge, a fact called THE GAUGE INVARIANCE .  

WE SHOULD BE AWARE THAT THE EVOLUTION OF THE SYSTEM DOES NOT CHANGE BUT APPEARANCE OF 
THE EQUATION OF THE MOTION FOR THE SYSTEM COULD CHANGE. FOR EXAMPLE, AS FOLLOWS FROM  (33), 
THE CANONICAL MOMENTA WILL CHANGE: 

′ P i = Pi − ∂ i f . 
Nevertheless, only the appearance of the system is altered, not its evolution. Measurable values (such as 
fields, mechanical momentum) do not depend upon it. One might consider Gauge invariance as an 
inconvenience, but, in practice, it provides a great opportunity to find a gauge in which the problem 
becomes more comprehensible and solvable. 
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The action is an additive function: therefore, the action of a charge in electromagnetic field is simply the 
direct sum of a free particle’s action and action of interaction: (remember 
ds = ds2 / ds = dx idxi / ds = u

idxi ) 

S = −mcds −
e
c
Aidxi

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ = −mcui −
e
c
Ai⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ dxi      (34) 

Then the total variation of the action is 

� 

δS = δ −mcds −
e
c
Aidxi

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

A

B

∫ = −mc
dxidδxi
ds

−
e
c
Aidδxi −

e
c
δAidxi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ =

− mcui +
e
c
Ai⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ δxi

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
A

B

+ mc
dui

ds
δxids+

e
c
δxidA

i −
e
c
δAidxi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ = 0.
  (35) 

That gives us a 4-momentum 

  
Pi = −

δS
δxi

= mcui +
e
c

Ai⎛ 
⎝ 

⎞ 
⎠ = H / c,

! 
P ( )= pi +

e
c

Ai ;      (36) 

with  

  

H = E = c(mcu0 + e
c

A0 ) = γmc 2 + eϕ = c m2c2 + ! p 2 + eϕ ;

! 
P = γm

! 
v + e

c

! 
A =
! 
p + e

c

! 
A ;⇒

! 
p =
! 
P − e

c

! 
A .    (37) 
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The Hamiltonian must be expressed in terms of generalized 3-D momentum, 
  

� 

! 
P = ! p + e

c
! 
A  and it is 

  

� 

H(! r ,
! 
P ,t) = c m2c 2 +

! 
P −

e
c
! 
A 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

+ eϕ;    (38) 

with Hamiltonian equation following from it: 

  

� 

! v =
d! r 
dt

=
∂H
∂
! 
P 

=
! 
P c − e

! 
A 

m2c 2 +
! 
P −

e
c
! 
A 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2  

  

� 

d
! 
P 

dt
=

d! p 
dt

+
e
c

d
! 
A 

dt
= −

∂H
∂! r 

= −e
! 
∇ ϕ − e

{(
! 
P −

e
c
! 
A )⋅
! 
∇ }
! 
A 

m2c 2 +
! 
P −

e
c
! 
A 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

= −e
! 
∇ ϕ −

e
c
(! v ⋅
! 
∇ )
! 
A ; 
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From this equation we can derive (without any elegance!) the equation for mechanical momentum 
  

� 

! p = γm! v . We will not do it here, but rather we will use easier way to obtain the 4D equation of motion via 
the least-action principle. We fix A and B to get from equation (35) 

δS = mcuiδxids +
e
c
δxidA

i −
e
c
δAkdxk

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ = mc
dui

ds
δxids +

e
c
∂Ai

∂xk
δxidxk −

e
c
∂Ak

∂xi
δxidxk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ =

dpi

ds
+ e
c

∂Ai

∂xk
− ∂Ak

∂xi

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
uk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ δxids = 0.
 (39) 

As usual, the expression inside the round brackets must be set at zero to satisfy (39); i.e., we have the 
equations of charge motion in an electromagnetic field: 

� 

mc du
i

ds
≡
dpi

ds
=
e
c
F ikuk;       (40) 

wherein we introduce an anti-symmetric electromagnetic field tensor 

� 

F ik =
∂Ak

∂xi
−
∂Ai

∂xk
.      (41) 
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Electromagnetic field tensor: The Gauge Invariance can be verified very easily: 

� 

′ F ik =
∂ ′ A k

∂xi

−
∂ ′ A i

∂xk

= F ik −
∂ 2g

∂xi∂xk

+
∂ 2g

∂xk∂xi

= F ik; 

which means that the equation of motion (40) is not affected by the choice of the gauge, and the 
electromagnetic field tensor is defined uniquely! Using the Landau convention, we can represent the 
asymmetric tensor by two 3-vectors (see Appendix A):  

  

� 

F ik = (−
! 
E ,
! 
B );Fik = (

! 
E ,
! 
B );  

� 

F ik =

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.         (42) 

  

� 

! 
E  is the so-called vector of the electric field and   

� 

! 
B  is the vector of the magnetic field. Note the 

occurrence of the Lorentz group generator (see Appendix B) in (42). The 3D expressions of the field 
vectors can be obtained readily:  

  
Eα = Fα 0 =

∂A0

∂xα
−
∂Aα

∂x0
− = −

∂ϕ
∂rα

−
1
c
∂Aα

∂ t
; α = 1, 2,3;

! 
E = −

1
c
∂
! 
A 
∂ t

− gradϕ;    (43) 

  

� 

Bα = − 1
2

eακλF κλ = eακλ ∂Aλ

∂xκ

− ∂Aκ

∂xλ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;
! 
B = curl

! 
A ; F κλ = eλκαHα .   (44) 
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 A 3D asymmetric tensor 

� 

eακλ  and the curl  definition are used to derive last equation and use Greek 
symbols for the spatial 3D components. The electric and magnetic fields are also Gauge invariant being 
components of Gauge invariant tensor. 
We have the first pair of Maxwell's equations without further calculation using the fact that differentiation 
is symmetric operator (∂ i∂ k ≡ ∂ k∂ i ): 

� 

eiklm∂
kF lm = eiklm∂

k ∂ l Am −∂mAl( ) = 2eiklm (∂
k∂ l )Am = 0 ;   (45) 

or explicitly: 

� 

∂ kF lm +∂ lF mk +∂mF kl = 0 .     (46) 
A simple exercise gives the 3D form of the first pair of Maxwell equations. They also can be attained using 
(43) and (44) and known 3D equivalencies:  div(curl

! 
A ) ≡ 0 ;curl(gradϕ) ≡ 0 : 

  

� 

! 
E = −gradϕ − 1

c
∂
! 
A 
∂t
;

! 
B = curl

! 
A ;

  

  

� 

curl
! 
E = −curl(gradϕ) − 1

c
curl∂

! 
A 
∂t

= − 1
c
∂
! 
B 
∂t
;

div
! 
B = div(curl

! 
A ) ≡ 0;

   (47) 

I note that (47) is the exact 3D equivalent of invariant 4D Maxwell equations (45) that you may wish to 
verify yourself. There are 4 equations in (45): i=0,1,2,3. The div is one equation and curl gives three 
(vector components) equations. Even the 3D form looks very familiar; the beauty and relativistic 
invariance of the 4D form makes it easy to remember and to use. 

First pair of Maxwell equations – free of charge 
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EM Fields transformation, Invariants of the EM field. The 4-potential was defined as 4-vector and it 
transforms as 4-vector. The electric and magnetic fields, as components of the asymmetric tensor, follow 
its transformation rules (See Appendix A). 

ϕ = γ ( ′ϕ + β ′Ax ); Ax = γ ( ′Ax + β ′ϕ );
Ey = γ ( ′Ey + β ′Bz ); Ez = γ ( ′Ez − β ′By );
By = γ ( ′By − β ′Ez ); Bz = γ ( ′Bz + β ′Ey ).

     (48) 

and the rest is unchanged. An important repercussion from these transformations is that the separation of 
the electromagnetic field in two components is an artificial one. They translate into each other when the 
system of observation changes and MUST be measured in the same units (Gaussian). The rationalized 
international system of units (SI) system measures them in V/m, Oe, A/m and T. Why not use also a horse 
power per square mile an hour, the old British thermal units as well? This makes about the same sense as 
using Tesla or A/m. 
While the values and directions of 3D field components are frame-dependent, two 4-scalars can be build 
from the EM 4-tensor   

� 

F ik = (−
! 
E ,
! 
B )    

   

� 

F ikFik = inv;    eiklmFikFlm = inv;      (49) 
which in the 3D-form appear as  

    

� 

! 
B 2 −

! 
E 2 = inv; (

! 
E ⋅
! 
B ) = inv.      (50) 

This conveys a good sense what can and cannot be done with the 3D components of electromagnetic 
fields. Any reference frame can be chosen and both fields transferred in a minimal number of components 
limited by (50). For example; 1) if   

� 

! 
E >

! 
B  in one system it is true in all systems and vice versa; and (2) if 

fields are perpendicular in one frame,   

� 

(
! 
E ⋅
! 
B ) = 0 , this is true in all frames. When   

� 

(
! 
E ⋅
! 
B ) = 0  a frame can 

always be found where 

� 

E  or 

� 

B are equal to zero (locally!). 
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Lorentz form of equation of a charged particle’s motion. 

The equations of motion (40) can rewritten in the form: 

  

� 

dE
dt

= c
dp0

dt
= eF 0kvk = e

! 
E ⋅ ! v ; vk =

dxk

dt
= (c,−! v )

d! p 
dt

= e ˆ e αFαk vk

c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

e
c

ˆ e α ⋅ cFα 0 − ˆ e α ⋅ Fακvk( ) = e
! 
E + ˆ e αeακλ Bλ

vk

c
= e
! 
E +

e
c
! v ×
! 
B [ ].

   (51) 

So, we have expressions for the generalized momentum and energy of the particle in an electromagnetic 
field. Generalized momentum is equal to the particle’s mechanical momentum plus the vector potential 
scaled by e/c. The total energy of the charged particle is its mechanical energy, 

� 

γmc 2 , plus its potential 
energy ,

� 

eϕ  , in an electromagnetic field. The Standard Lorentz (not Hamiltonian!) equations of motion for 

  

� 

! p = γm! v  are 

  

� 

d! p 
dt

= e
! 
E +

e
c
! v ×
! 
B [ ].      (52) 

with the force caused by the electromagnetic field (Lorentz force) comprised of two terms: the electric 
force, which does not depend on particle’s motion, and, the magnetic force that is proportional to the 
vector product of particle velocity and the magnetic field, i.e., it is perpendicular to the velocity. 
Accordingly, the magnetic field does not change the particle’s energy. We derived it in Eq. (51):  

  

� 

mc 2 dγ
dt

= e
! 
E ⋅ ! v ;      (53) 

Eqs. (52) and (53) are generalized equations. Using directly standard Lorentz equations of motion in a 3D 
form is a poor option. The 4D form is much better (see below) and, from all points of view, the 
Hamiltonian method is much more powerful! 
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Prelude of things to come 

X =

x1
x2
....
xn−1
xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

; dX
dt

= D ⋅X; D
d11 ... ... dn1
... ... ... ...
... ... ... ...
d1n ... ... dnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

;

X t( ) = eD⋅t ⋅ X 0( ) ≡ M ⋅ X 0( );
dM
dt

= D ⋅M ; M (t) = eD⋅t ; M (t1 t2 ) = e
D⋅ t2−t1( )
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Unusual twist. 
It is worth noting that the 4D form of the charge motion (40) and its matrix form is the most compact one,  

� 

ui = dx i

ds
; mc du

i

ds
= e
c
F i

kuk;⇒ d
ds

x[ ] = I[ ]⋅ u[ ]; d
ds

u[ ] = e
mc 2

F[ ]⋅ u[ ]
  

(54) 

and, in many cases, it is very useful. We treat the x, u as a vectors, and [F] as the 4x4 matrix. [I] is just 
the unit 4x4 matrix It has interesting formal solution in the matrix form: 

u[ ] = e
e

mc 2
F[ ]ds∫ u0[ ]; x[ ] = xo[ ]+ ds∫ e

e
mc 2

F[ ]ds∫⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ u0[ ]

    
(55) 

Its resolution is well defined when applied to the motion of a charged particle in uniform, constant EM 
field: 

� 

u[ ] = e
e

mc 2
F[ ](s−s0 )

u0[ ]; x[ ] = xo[ ] + e
e

mc 2
F[ ](s−s0 )

ds∫ e
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ u0[ ]    (56) 

The Lorentz group of theoretical physics (see Appendix B) is fascinating, and the fact that EM field 
tensor has the same structure as the generator of Lorentz group is no coincidence – rather, it is indication 
that physicists have probably come very close to the roots of nature in this specific direction. This 
statement is far from truth for other fundamental forces and interactions. 
To conclude this subsection, we will take one step further from (54) and write a totally linear evolution 
equation for a combination of 4D vectors 

� 

d
ds

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = Λ[ ]⋅

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ; Λ[ ] =

0 I
0 e

mc 2
F

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
     (57)

 

where [Λ] is an 8x8 degenerated matrix. Similarly to (55) and (56)  

� 

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = e

Λ[ ]ds∫ ⋅
x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
o

;
x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = e Λ[ ](s−soI ⋅

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
o

for Λ[ ] = const ;
   (58) 
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First pair of Maxwell's equations (a little more of juice) 

 We will derive full set of Maxwell equations using the least action principle. Nevertheless, you 
can consider the Maxwell equation as given - in any case they were derived originally from numerous 
experimental laws! 

 First pair of Maxwell's equations is the consequence of definitions of electric and magnetic field 
through the 4-potential: 

  

! 
E = −gradϕ − 1

c
∂
! 
A 
∂t
;

! 
H = curl

! 
A ;

 it is equivalent to 

 

curl
!
E = −curl(gradϕ )− 1

c
curl ∂

!
A
∂ t

= − 1
c
∂
!
H
∂ t
;

div
!
H = div(curl

!
A) ≡ 0;

  (59) 

Nevertheless, it is very important to remember that they are actually originated from experiment. First 
Maxwell equation is the Faraday law and the second is nothing else that absence of magnetic charge! You 

should remember all time that inclusion of the term Sint = −
e
c

Ai

A

B

∫ dxi  into action integral is consequence 

of experiment! Thus, the first pair of Maxwell equations governing the electromagnetic fields is: 

  
curl
! 
E = −

1
c
∂
! 
H 
∂t
;       (60) 

  div
! 
H = 0;       (61) 

with well known integral ratios following it: 

Gauss' theorem:     
  

! 
H ∫ d
! 
a = div

! 
H ∫ dV = 0;      (62) 

Stokes' theorem:     
  

! 
E ∫ d
! 
l = curl

! 
E ∫ d
! 
a = −

1
c
∂
∂t

! 
H ∫ d
! 
a ;   

 (63) 

where   d
! 
a  is vector of the element of the surface and   d

! 
l  is a vector of a contour length. Integral equations 

read: the  

1) Flux of the of the magnetic field though the surface covering any volume V is equal zero; 

2) The circulation of electric field around the contour (electromotive force) is equal to the derivative 
of the magnetic flux though the contour scaled down by "-c" - the Faraday law.  
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 As we discussed earlier, in the relativistic picture of the world, the field acquires 
its it’s own physical reality. Therefore, the action of whole system including a particle 
and a field must consist of three parts: the action of free particle, the action of free field 
and the action their interaction: 

S = Sp + Sf + Spf .     (64) 

We already got first and last term. For a several free particles, the action is the direct sum 
of individual actions: 

Sp = − mc ds∫
p
∑ ;      (65) 

and interaction with the field is the sum of their individual interactions: 

Spf = −
e
c

Aidxi∫
p
∑ .       (66) 

Action of EM field 
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1 In field theory the 4-vector of the field Ai  is coordinate of the field. Therefore, field's 4-tensor is first order 
derivative of the coordinates. According to Hamiltonian principle, the action could have under integral only 
coordinates and their first derivatives. This requirement excludes derivatives of Fik  from the action's integral. 
2 4-vector of the field Ai  is not unique (Gauge transformation) and trial function comprising 4-vector of the field 
will give non-unique equation of the field. The difference with interaction term is that last includes first order of 4-
potential and non-uniqueness does not affect equation of motions. Situation is not the same for quadratic term! A 
variation acts in similar manner as a differentiation  - “to get linear (2x1) we need to differentiate (x2)”. 

The sum of (65) and (66) gives us equation of particle's motion in "external", i.e. pre-
defined electromagnetic fields. Now we want to know how charged particles influence 
the EM field and how EM field evolves on its own? We do not know, also, what defines 
properties of a free field? First pair of Maxwell equations gives us only two connections: 
the time derivative of the magnetic field and its divergence (zero). We still don't know 
what is time derivative of electric field and what is its divergence? 

 Please remember that all following discussion must be considered as a logical 
excise. Final form of the field action has to have the most important property: it must 
satisfy the experimental observations! Where to start to get them? 

 One of the most important properties of the field confirmed by experiments is the 
Principle of Superposition: 

the resulting field produced by various sources is a simple composition (the direct sum) 
of the fields produced by individual sources! It means that resulting electric and magnetic 
fields are vector sum of individual fields. Thus, we have a clue that we should look for 
type of equations, which allows superposition of solutions, i.e. linear differential field 
equations. In order to generate linear differential equations, the action should contain 
quadratic expression of the field components, which described by field 4-tensor Fik .  



16 

 In addition, the action must be 4-invariant (4-scalar, not pseudo-scalar!), which 
leaves us with   F

ik Fik = 2(
! 

H 2 −
! 
E 2 ) . Finally, the field is "an entity leaving" in space and 

time coordinates. In order to describe total field we should integrate over all space 
between two "time" events dΩ = dx0dx1dx2dx3 = cdtdV  which is 4-invariant: 
dΩ = eiklmdxa

idxb
kdxc

ldxd
m  where a,b,c,d four 4-vectors defining element of 4-volume. 

Therefore, a probable form of the action of the EM field is: 

Sf = −a Fik Fik∫ dΩ.       (67) 

The choice of the coefficient before integral is equivalent to the choice of the units to 
measure the field. In the Gaussian system of units, which we are using, fields are 
measured in Gs and coefficient is  

a = 1
16π ⋅c

.      (68) 

The total action is: 

S = − mc ds∫
p
∑ −

e
c

Aidxi∫
p
∑ −

1
16πc

FikFik∫ dΩ.    (69) 



Simple things useful in accelerator physics ���
SGS <->   SI  <->  eV/TeV

•  1 meter = 100 cm;    1kg=103 g;     1J = 107 erg; seconds are universal 
•  Speed of the light 2.9979 x 1010 cm/sec ~ 3 x 1010 cm/sec 

•  Electron charge, e         4.803 x 10-10 ESU 1.602 x 10-19 C

•  EM field, Gs         1 Gs = 299.79 (~300) V/m      1 T =104 Gs
•  Energy 1 eV =1.602 x 10-12 erg =1.602 x 10-19 J  

•  Energy/rigidity (pc) e x 1 Gs cm = 299.79 eV ~ 0.3 keV
•                                       e x 1 T m = 299.79 MeV  ~ 0.3 GeV

17 

I found one useful unit in old British – modern USA system: 
1’ = One foot ~ 30 cm ~ c*10-9 sec   

This how I remember what is one foot. 

 
E = !p2c2 + mc2( )2

We will introduce more “handy” formulae/relations in the future  



Interlude
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Magnetic structures are main components of the accelerators: they are used both 
to bend and to focus beams. The reason is that for a relativistic particle moving 
with speed ~ c, 1 Gs of magnetic field is equivalent to 1 Gs (30 kV/m) electric 
field. DC electric fields above 6 MV/m (200 Gs) are impractical (and also very 
dangerous – electric voltage (current) can kill you while magnetic field would 
not! – unless you have a pace-maker). Meanwhile, room temperature magnets can 
operate at 20 KGs (600 MV/m) and superconducting magnets reach 100 KGs and 
above (3,000 MV/m). There is no practical ways of making comparable electric 
fields. 

! !

  

� 

d! p 
dt

= e
! 
E +

e
c
! v ×
! 
B [ ].



Interlude: DC electric field
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dE
dt

≡ mc2 dγ
dt

= e
!
E ⋅ !v;

ΔE = e

E ⋅d

l∫ = −

e
c
∂
∂t


H ⋅∫ ds

&

'
(

)

*
+

Size – 10s of meters  
Energy -few MeVs 
Gradient ~ 1 MeV/m 



Interlude: RF accelerator
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dE
dt

≡ mc2 dγ
dt

= e
!
E(!r ,t) ⋅ !v;

V1 = Eo z( )cos 2π z( )dz
−λ /4

λ /4

∫ = 0 V2 = Eo z( )cos 2π z( )dz
−λ /4

λ /4

∫ = 0
V4 = Eo z( )cos 2π z( )dz

−λ /4

λ /4

∫ = 0V3 = Eo z( )cos 2π z( )dz
−λ /4

λ /4

∫ = 0 V5 = Eo z( )cos 2π z( )dz
−λ /4

λ /4

∫ = 0

ω t

E z

 
e
!
E(!r ,t) ⋅ !v ≠ 0
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How β=1 RF accelerator works? 
In pictures 
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4-current and equation of continuity.  The conservation of the charge should affect our equations. Let's 
make a glance on this issue and write a charge conservation law in the form useful for future derivation of 
the field equations. It is very useful to describe charges by a distribution function. The charge density ρ  
is defined as the charge contained in unit volume: 
 

de = ρdV ;      (70) 

and microscopic (exact in classical EM) definition of ρ  is sum of Dirac's delta-functions: 

  
ρ = ea

a
∑ δ(! r − ! r a ) ;      (71) 

where index a is index to count particles. 4-vector of current is defined as: 

ji = ρ
dxi

dt .       (72) 

The fact that ji  is a 4-vector comes from equivalence: 

dedx i = ρ
dxi

dt
⋅ dtdV = ρ

dxi

dt
⋅ dΩ ;     (73) 

and the fact that charge is 4-scalar or invariant (experimental fact) and dΩ ≡ dVdt  is the 4-scalar. Thus: 

  j
i = (ρc,

! 
j );
! 
j =ρ! v .      (74) 
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To be exact, for point charges, the 4--current is: 

  
ji = ea

a
∑ δ (! r −

! 
r a )

dxa
i

dt
.      (75) 

It is the microscopic 4-current for ensemble of particles. When it is necessary, it can be averaged over a 
"small volume" for macroscopic description. We do not need averaging now and can comfortably use Eq. 
(75). Our goal is to get the equation of continuity: 

  
∂i j

i =
∂j i

∂xi = (
∂ρ
∂t

+ div
! 
j ) = 0;      (76) 

which is resulting from charge conservation. It is easy to do for microscopic distribution (75): 

  
∂ i j

i = ea
∂

c∂t
δ(! r − ! r a (t))c( ) + div( δ (! r − ! r a (t ))

! v a( ))⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
a
∑ ea

! 
∇ δ(! r − ! r a ) ⋅ −

∂
! r a (t)
∂ t

+
! v a

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
≡ 0

a
∑ ;

 (77) 

with   ∂
i = (∂ / ∂ct, ∂ / ∂

! 
r );∂ / ∂

! 
r (ra (t )) ≡ 0  and we use derivative of Dirac's delta-function. Now we are 

ready for next trick, i.e. to present action of the interaction as integral of 4-current: 

 

ea = ea∫ δ (!r − !ra )dV;
1
c

eaAkdx
k

a
∑∫ =

1
c

Ak eadx
k

a
∑ δ (!r − !ra )dV =∫

1
c

Ak j
k dt dV =∫

1
c2

Ak j
k dΩ∫   

 (78) 
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S = − mc ds∫
p
∑ −

1
c2

Ak j
kdΩ∫ −

1
16πc

FikFik∫ dΩ.    (79) 

Second pair of Maxwell's equations: more of the least action… 

 We already found equation of charges motion in the field. Let's consider all 
charges following their equation of motion  

δ for particles mc ds + Ak j
kdΩ∫∫

p
∑

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ = 0 .     (80) 
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Let's changes move along their real trajectories. Now we will vary only the field to find 
its equations of motion: 

δS = −
1

16πc 2
16πδAi j

i + cδ(FikFik)( )dΩ∫ = −
1

8πc2
8πδAi j

i + cF ikδFik( )dΩ∫ = 0;  
 (81) 

where we use  
FikδFik = δFikFik .     (82) 

It is important to remember that we can vary both particle's trajectories and field if we 
wish. It will give us two terms in the variation of the action: one containing variation of 
the trajectories 

δSpart =
dpa

i

ds
+
e
c

∂Ai

∂xk
−
∂Ak

∂xi

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
uk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ δxa ids
a
∑    (83) 

and the other containing variation of the field.  
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Variations for each particle and the field are independent. Therefore, each independent 
component of action’s variation must be equal zero. (83) will give us again equation of 
particle's motion, while field terms (81) will bring us to the field equations. Let's rewrite 
second term in (81): 

Fik = ∂iAk −∂ k Ai   
 

FikδFik = Fik∂ iδAk − F
ik∂kδAi = −Fki∂iδAk − F

ik∂ kδAi = −2Fik∂kδAi  . 
 (84) 

Now we can integrate by parts: 

δS = − 1
4πc2

4πδAi j
i − cFik ∂kδAi( )dΩ∫ =

− 1
4πc2

4π j i + c∂k F
ik( )δ Ai dΩ∫ − 1

4πc
Fik δ Ai dSk∫

surafaceof Ω

= 0;
 (85) 

with second integral obtained by 4D Gauss theorem:  
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div4∫ AidΩ = Ai∫ dSi ,     (86) 

where dSi  is element of hyper-surface surrounding 4-volume Ω . It is not so essential, 
how it looks. One simple case: we integrate over all space and fixed time interval (t1,t2). 
Surface of the W is full 3D space at moments of t1,t2. The least action method calls for 
zero variations on the boundaries δAi surafaceof Ω = 0  and second integral in (85) disappears 
leaving us with:  

δS = − 1
4πc2

4πj i + c∂kF
ik( )δAidΩ∫ = 0 .    (87) 

Please notice that we are left only with variations of 4-potential. It is very natural because 
variations of 4-potential fully define field's variations. Equation (87) gives us "second 
pair" of Maxwell equations in 4D form: 

 
∂Fik

∂ xk
= − 4π

c
ji      (88) 
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3D form follows directly from (88) and form of the field tensor: 
 

Flm =

0 −Ex −Ey −Ez
Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;     (89) 

and yields: 
 

  div
! 
E = 4πρ;       (90) 

 

  
curl
! 
H =

4π
c

! 
j +
1
c
∂
! 
E 
∂t
.       (91) 
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Equivalent forms of Maxwell equations: 
 

  

! 
E = −gradϕ −

1
c
∂
! 
A 
∂t
;

! 
H = curl

! 
A ;

 ⇔  Fik =
∂Ak

∂xi
−
∂Ai

∂xk
.   (94) 

 
Compact 4-D:  
 

eiklm
∂Flm
∂xk

= 0;   ⊕   
∂Fik

∂xk
= −

4π
c
ji ;  (95) 

Integral equations are obvious applications of Stokes and Gauss theorems to Eqs (90-91) 
 

  

! 
E ∫ d! a = 4π ρ∫ dV;        (92) 

 

  

! 
H ∫ d
! 
l =

1
c
(4π
! 
j +

∂
! 
E 
∂t∫ )d! a .      (93) 



End of our detour into mechanics ���
and  E&M 

•  We do not expect you to remember each and every 
form of Maxwell equations or Lagrangian /
Hamiltonian equations of motion

•  The goal was and is to remind you about the origin of 
the classical EM and Hamiltonian mechanics, and to 
be sure you can find formula needed for solving your 
home-works or future accelerator physics problems

•  Next class will be focused on the accelerator-specific 
approach to the particle’s motion
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