Homework 9

Problem 1. 4 x 4 points. FODO cell.

Consider a general FODO cell comprised of two quadrupoles F and D separated by two
drift sections, e.g. the structure below:
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(a) write matrix (both x and y or 4x4) of general FODO cell (not assuming any limitations
on K F,D).

(b) write stability criteria (for x and y) for periodic lattice built of this FOD cell. Hint — do
not try to solve it!

(c,d) make transition to short lens approximation and assume equal strength of
1
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and

(c) show that both x and y motion can be stable (e.g. prove so called strong focusing:
combination of focusing and defocusing length can provide focusing in both directions);

(d) define (e.g solve) the stability criteria for such cell.

Problem 2. 2x5 points. Find not-trivial solution for building an unit 2x2 transport matrix
out of repeating cells:

M*=IM#1
(a) show that one of the solutions trace(M)=0; Hint: used M*>=-1;
(b) for a “symmetric” FODO cell and finite length equally strong quadrupoles
K.=-K,=K;l,=1,=L; I, =1,=1 write the condition that M}=M'=1 ,eg
the 4x4 transport matrix is unit.

Solutions: Problem 1:

(a) We know already matrices of all these elements and need just multiply them in correct
order
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and similarly ugly expression for vertical matrix,
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(b) stability criteria are:

‘Trace M, ]‘ <2
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can be satisfied for both directions.
Problem 2. Ignoring trivial solution and complications imposed by M?* =1

M*=1— M*==*I pick M>=—-I; ad—bc=1
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has obvious solution
TraceM =a+d=0

Using previous problem, we can write
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This a transcendental equation, which has solution which can be found numerically.
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