
Chapter 3797

Classical Cyclotron798

Abstract This tutorial is an introduction to the classical cyclotron, with hints at799

spin dynamics, hands-on: by numerical simulation. It begins with a brief reminder800

of the historical context, and then introduces the theoretical material needed for the801

subsequent simulation exercises.802

803

Basic charged particle optics and acceleration concepts are addressed in this chapter,804

including805

- closed orbit in a cyclic accelerator,806

- weak focusing in a dipole magnet,807

- periodic transverse motion,808

- revolution period and isochronism,809

- voltage gap and resonant acceleration,810

- the cyclotron equation.811

812

Simulations of a cyclotron dipole just requires the optical element DIPOLE, an813

analytical modeling of the field. It may be chosen to use TOSCA however, if a814

field map of the cyclotron magnet (computed or measured) is available. The only815

other optical element which will be needed is CAVITE, to simulate an oscillating816

voltage gap. Simulations also introduce to the default output listing zgoubi.res, to817

optional output files such as zgoubi.plt produced by setting IL=2 in optical ele-818

ments, zgoubi.CAVITE.out produced by CAVITE, zgoubi.MATRIX.out produced819

by MATRIX, and other similar zgoubi.*.out output files aimed at data post-treatment,820

including producing graphs. Additional keywords are introduced, including FIT[2],821

a matching procedure; FAISCEAU which allows logging local particle coordinates822

in zgoubi.res; FAISTORE which logs local particle coordinates in a user defined file,823

usually for further external data treatment or plotting; MARKER; the ’system call’824

command SYSTEM; REBELOTE, a ’do loop’; and some more. Spin motion will825

be solved as well, this will require introducing SPNTRK, a request to do so while826

raytracing, and SPNPRT which prints out spin vector components to zgoubi.res.827

15
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Notations used in the Text828

B; B0 field value; at reference radius R0

B; BR; By field vector; radial component; axial component
Bρ = p/q particle rigidity
C; C0 orbit length, C = 2πR; reference, C0 = 2πR0

E particle energy
frf ; h RF frequency; RF harmonic number
k = R

B
dB
dR

radial field index
m; m0; M mass; rest mass; in units of MeV/c2

p; p; p0 particle momentum vector; its modulus; reference
q particle charge
R; R0; RE orbital radius; reference radius R(p0); at energy E
s path variable
v; v particle velocity vector; its modulus
V(t); V̂ oscillating voltage; its peak value
x, x’, y, y’ radial and axial coordinates in the moving frame [(*)’ = d(*)/ds]

β = v/c; β0; βs normalized particle velocity; reference; synchronous
γ = E/m0 Lorentz relativistic factor
∆p, δp momentum offset
ǫu Courant-Snyder invariant (u: x, r, y, l, Y, Z, s, etc.)
φ RF phase at particle arrival at the voltage gap

829

Introduction830

The cyclotron is the first cyclic accelerator. The concept: resonant acceleration of831

particles circling in a uniform magnetic field, goes back to the late 1920s [1]. The

Fig. 3.1 A sketch of the
classical cyclotron. In the uni-
form magnetic field between
two circular poles (top) an
ion spirals out (bottom). A
double-dee (or a a single-dee
facing a slotted electrode)
forms a gap to which a fixed-
frequency oscillating voltage
V(t) is applied. Its oscillation
frequency is a harmonic of the
revolution frequency. Particles
experiencing proper voltage
phase at the gap are accel-
erated. A septum electrode
allows bunch extraction
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first cyclotron was constructed at Berkeley, acceleration of H+2 hydrogen ions to832

80 keV [2] was achieved in 1931. The apparatus used a single dee vis-à-vis a slotted833

electrode forming a voltage gap, the ensemble housed in a 5 inch diameter vacuum834

chamber and placed in the 1.3 Tesla field of an electromagnet (Fig. 3.1). A ≈ 12 MHz835

vacuum tube oscillator a 1 kVolt peak gap voltage.836

The goal foreseen in developing this technology was the acceleration of protons837

to MeV kinetic energy range for the study of atom nucleus - and in background a838

wealth of potential applications. An 11 inch cyclotron delivering a 0.01 µA H+2 beam839

at 1.22 MeV [3], and then a 27 inch cyclotron reaching 6 MeV (Fig. 3.2), followed [4].840

In the wake of Cockcroft and Walton first artificial disintegration experiment, targets841

were mounted at the periphery of the 11 inch cyclotron, disintegrations were observed842

in 1932. And in 1933: ‘The neutron had been identified by Chadwick in 1932. By843

1933 we were producing and observing neutrons from every target bombarded by844

deuterons.“ [4, M.S. Livingston,p. 22].845

V

Fig. 3.2 Berkeley 27 inch cyclotron, first operated in 1934, accelerated deuterons up to 6 MeV. Left:
a double-dee (seen in the vacuum chamber, cover off)), 22 inch diameter, creates an accelerating
gap: 13 kV, 12 MHz radio frequency voltage is applied for deuterons for instance (through two feed
lines seen on the right). This apparatus was dipped in the 1.6 Tesla dipole field of a 27 in diameter
(75 ton) electromagnet. A slight decrease of the dipole field with radius, from the center of the
dees, assured vertical beam focusing. Particles spiral out from the center of the dees to the rim
(where they strike a target, seen at the bottom on the left - arrow). Right: ionization of the air by
the extracted beam (1936); the view also shows the vacuum chamber squeezed between the pole
pieces of the electromagnet

The scope with accelerated beams from cyclotrons was broad: “At this time846

biological experiments were started. I can recall the first time that a mouse was847

irradiated with neutrons. We put the mouse in a little cage and stuck him up on the848

side of the cyclotron tank and left him there for a while. Of course, nothing happened849

because [etc.]” [4, McMillan,p. 26]; and “Also at about this same time the first850

radioactive tracer experiments on human beings were tried” [op.cit.]; “[...] simple851

beginnings of therapeutic use, coming a little bit later, in which neutron radiation was852

used, for instance, in the treatment of cancer. These things have gone on and built up853
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Fig. 3.3 Berkeley 184 in
cyclotron. It was modified into
a synchrocyclotron in 1946

so that there’s now a whole field” [op.cit.]; and “Another highlight from 1936 was the854

first time that anyone tried to make artificially a naturally occurring radionuclide.”855

(a bismuth isotope) [op.cit.]. The period also saw beam extraction developments856

(Fig. 3.2). Cyclotrons were constructed in many laboratories worldwide, from the857

early 1930s, following Berkeley demonstration.858

Limitation in energy859

An advanced theoretical understanding of the cyclotron more or less took until the860

mid-1930s, ending up with two news, a bad one and a good one, bad one first:861

(i) the energy limitation, a consequence of the loss of isochronism resulting from862

the relativistic increase of the ion mass: “[...] it seems useless to build cyclotrons of863

larger proportions than the existing ones [...] an accelerating chamber of 37 in radius864

will suffice to produce deuterons of 11 MeV energy which is the highest possible865

[...]” [5] (related simulations will conclude this Chapter, “Classical Cyclotron”), or866

in a different form: “If you went to graduate school in the 1940s, this inequality867

(−1 < k < 0) was the end of the discussion of accelerator theory” [6].868

The good news next:869

(ii) the overcoming of that relativistic limit, due to L.H. Thomas in 1938 [7] - it870

took a few years though, to see practical effects.871

Classical cyclotron technology has been in use for some time up to the few tens872

of MeV/u that it allows (Fig. 3.4), for such applications as neutron production for873

material science, radio-isotope production for medicine, injector stages in cyclotron874

complex facilities [9]. However with the progress in magnet computation tools and875

magnet fabrication (including permanent magnet techniques [10]), and the progress876

in computational speed and beam dynamics simulations (which includes accurate877

raytracing, as concerned in the present opus), the azimuthally varying field (AVF,878

or Thomas’ [7]) cyclotron, much more performing, comes out to be essentially as879

simple and has in a general manner prevailed (Fig. 3.4).880
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Fig. 3.4 Evolution of cy-
clotron species, over the
years [8, Fig. 8]

3.1 Theory, Basic Concepts881

The cyclotron was conceived as a means to overcome the inconvenient of using a882

long series of high voltage electrodes in a linear layout, by, instead, repeated re-883

circulation using a magnetic field, for incremental, resonant, energy gain through884

a single accelerating gap. This gap is formed by a pair of cylindrical electrodes,

Fig. 3.5 Resonant acceler-
ation: a positive ion bunch
meets an accelerating field
E across gap A, at time t; it
meets again, half a revolution
later, at time t + Trev/2, an
accelerating field across gap
A’, and so on so forth. In
this h = 1 configuration, one
bunch (and only one) over a
turn is in synchronism with
the accelerating phase of the
oscillating voltage, at both
gaps. Higher h allows more
bunches: the next possibility
with two dees would be h=3,
and three stable bunches at
120 degrees from one another
(thin contours) over a turn
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885

“dees” (Fig. 3.5) which are applied a fixed frequency oscillating voltage, generated886

using a radio transmitter. The dees are placed in a uniform magnetic field which887

causes the ion bunches to follow, as they are accelerated, a piecewise-circular mo-888

tion with increasing radius, normal to the field, more or less in phase with the voltage889

oscillation. An oscillating voltage is necessary as a DC voltage gap (a conservative890

field) in a circular accelerator can not yield energy gain: with the advent of resonant891

acceleration in the cyclotron and the development of cyclic accelerators in the hori-892

zon, it is interesting to note in passing that it is not possible to accelerate a particle893
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traveling on a closed path using an electrostatic field (E = −gradV(R, t) derives894

from a scalar potential), as the work by F = qE only depends on the initial and final895

states, it does not dependent on the path followed (Fig. 3.6), which can be written896

W =

∫ Q

P

F.ds = −q

∫ Q

P

gradV .ds = −q(VQ − VP) (3.1)

On a closed path:
∮

F.ds = 0, the force is conservative, no work is performed,897

consequence: a DC voltage gap in a circular machine does not yield energy gain.898

Instead, the work of a force of induction origin, where E = −∂A/∂t arises from899

the variation of a magnetic flux (B = curl A, A a vector potential), may be non-zero900

on a closed path. This is achieved for instance using a radio-frequency system which901

feeds an oscillating voltage across a gap, V(t) = V̂ sin(ωrf t + φ) (Fig. 3.7).902

Fig. 3.6 Top: the work of the
electrostatic force F = qE is

W =

∫ Q

P
F.ds = −q(VQ −

VP ). Bottom: over closed path,
the particle loses along (2) the
energy gained along (1)

Q      

Q

(2)

P

P
(1)

Fig. 3.7 A particle which
reaches the double-dee gap at
the RF phase ωrf t = φA or
ωrf t = φB is accelerated. If it
reaches the gap at ωrf t = φC

it is decelerated

t

ωV=V sin(    t)
RF

RF
φ=ω

φ φ
φC

BA

As an accelerated bunch spirals outward in a uniform magnetic field, the increase903

in the distance it travels over a turn is compensated by its velocity increase: in904

the non-relativistic approximation (β ≪ 1), the revolution period Trev increases905

only slowly with energy; with appropriate voltage frequency frf ≈ h/Trev revolution906

motion and RF can be maintained in sufficiently close synchronism, Trev ≈ hTrf , that907

the bunch will transit the accelerating gaps (Fig. 3.5) during the accelerating phase908

of the oscillating V(t) (Fig. 3.7).909
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The orbital motion quantities: radius R, field B, particle rigidity BR, revolution910

frequency frev = ωrev/2π, satisfy911

BR =
p

q
, 2πfrev =

v

R
=

qB

m
=

qB

γm0
(3.2)

These relationships hold at all γ, from v ≪ c (γ ≈ 1, domain of the classical

cyclotron) to γ > 1 (domain of the isochronous cyclotron). To give an idea of the
revolution frequency, in the limit γ = 1 one has

frev

B
=

q

2πm
= 15.25 MHz/T for protons.

The RF frequency frf = ωrf/2π is constant in a cyclotron, whereas the revolution912

period slowly increases with energy (Sec. 3.1.3). In the classical cyclotron frf is set,913

by design, equal to hfrev for an intermediate energy taken along the acceleration914

cycle. The energy gain, or loss, by the particle when transiting the gap is915

∆W = qV̂ sin φ(t) with φ(t) = ωrf t − ωrevt + φ0 (3.3)

with φ its phase with respect to the RF signal at the gap (e.g., φA, φB or φC in916

Fig. 3.7) and φ0 the value at t = 0, ωrevt the orbital angle advance.917

Fixed-frequency acceleration requires the RF and cyclotron frequencies to be
matched to one another. However the relativistic increase of the mass upon velocity
increase causes the revolution period to increase with momentum: in Trev = 2πm/qB,
B is almost constant and m increases, resulting in a turn-by-turn

∆Trev

Trev
= γ − 1

The mis-match between the accelerating RF and cyclotron frequencies is a918

turn-by-turn cumulative effect and sets a limit to the tolerable isochronism defect,919

∆Trev/Trev ≈ 2−3%, or highest velocity β = v/c ≈ 0.22. This results for instance in920

a practical limitation of the “classical cyclotron” to an upper ≈ 25 MeV for protons,921

and ≈ 50 MeV for D and α particles.922

To conclude on these basis concepts regarding acceleration, multiple accelerating923

gap structures is part of the evolutions of the classical cyclotron, where a “D” is924

rather a “∆” pattern, and towards high RF frequency harmonic. An example among925

many others is, as an illustration, GANIL C0 injector with its 4 accelerating gaps926

and h=4 and h=8 RF operation [9].927

3.1.1 Fixed-Energy Orbits, Revolution Period928

The differential equations of particle motion are established in the Serret-Frénet929

frame, Sec. 3.1.2, however, some basic geometrical properties can be derived in the930



22 3 Classical Cyclotron

laboratory frame, as follows. In the laboratory frame (O;x,y,z), with (O;x,z) the bend931

plane, assume B|y=0 = By . A particle is launched from the origin with a velocity932

v = (v sinα, 0, v cosα) at an angle α from the longitudinal axis z (Fig. 3.8).933

Fig. 3.8 Circular motion of a
charged particle in the plane
normal to a uniform magnetic
field B. The circle center
is at xC = −v cosα/ωrev,
zC = v sinα/ωrev,

O

z
α

V

x

B

C

cz xc

y

Solving934

mÛv = qv × B (3.4)

with v = ( Ûx, Ûy, Ûz), B = (0, By, 0) yields the parametric equations of motion935





x(t) = v

ωrev
cos(ωrevt − α) − v cosα

ωrev

z(t) = v

ωrev
sin(ωrevt − α) + v sinα

ωrev
y(t) = constant

(3.5)

which results in936

(
x +

v cosα

ωrev

)2

+

(
z − v sinα

ωrev

)2

=

(
v

ωrev

)2

(3.6)

a circular trajectory of radius R = p/qB centered at x = −v cosα/ωrev, z =

v sinα/ωrev, revolution period

Trev =
2π

ωrev
=

2πm

qB

Cyclic motion - Horizontal motion in uniform field has no privileged reference orbit:937

for a given momentum, the initial radius and velocity vector define a particular closed,938

circular orbit. A particle launched with an axial velocity component vy on the other939

hand, drifts vertically linearly with time, as there is no axial restoring force. The next940
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Section will investigate the necessary field property, absent in our simplified field941

model so far, proper to ensure confinement of the multiturn 6-dimensional periodic942

motion in the vicinity of the median plane of the cyclotron dipole magnet.943

3.1.2 Weak Focusing, Transverse Motion944

In the lower energy (smaller radius) accelerated turns in a classical cyclotron, the945

electric field in the accelerating gap contributes proper transverse focusing so that946

the magnet gap can be designed parallel (an example can be found in Ref. [9]). In947

very low energy applications even, extraction energy in the tens of keV/u range where948

electric fields are still effective, flat magnetic field with uniformity dB/B < 10−4
949

can be achieved over the (reduced) extent of the cyclotron orbit and maintains proper950

isochronism. Beyond this low energy region however, at greater radius, a magnetic951

field gradient must be introduced, field decreasing with R, by shaping the magnet952

poles, to ensure proper vertical focusing. Note that because of the field decreases953

with R in a parallel gap, as discovered a posteriori, the very first cyclotrons were954

working [11]. This section introduces to these magnetic focusing principles.955

In the following, BR(R), By(R) denote the radial and axial components of the956

magnetic field at radius R. Median-plane symmetry of the field is assumed, thus957

BR |y=0 = 0 at all R (Fig. 3.9). Particle coordinates are defined in the Serret-Frénet958

frame (O;s,x,y), moving along the R0 radius reference orbit (the origin O is at the959

location of the reference particle, s axis tangent to the reference orbit, x axis radial,960

y axis normal to the bend plane, Fig. 3.10). The radial excursion of a particle with961

respect to the reference orbit writes962

x(t) = R(t) − R0 ≪ R0 (3.7)

Considering small radial and axial excursions from (R = R0, y = 0), a Taylor963

expansion of the magnetic field can be introduced,964

By(R0 + x) = By(R0) + x
∂By

∂R

����
R0

+

x2

2!

∂2By

∂R2

�����
R0

+ ... ≈ By(R0) + x
∂By

∂R

����
R0

BR(0 + y) = y
∂BR

∂y

����
0︸ ︷︷ ︸

=
∂By

∂R

���
R0

+

y
3

3!

∂3BR

∂y3

����
0

+ ... ≈ y
∂By

∂R

����
R0

(3.8)

Using this approximation, the differential equations of motion in the moving frame965

can be written under the form, linear in x and y,966
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Fx = m Üx = −qvBy(R) +
mv

2

R0 + x
≈ −qv

(

By(R0) +
∂By

∂R

����
R0

x

)

+

mv
2

R0

(
1 − x

R0

)

→ m Üx = −mv
2

R2
0

(
R0

B0

∂By

∂R

����
R0

+ 1

)

x (3.9)

Fy = m Üy = qvBR(y) = qv
∂BR

∂y

����
y=0

y + higher order → m Üy = qv
∂By

∂R
y

Fig. 3.9 Axial motion stabil-
ity requires proper shaping of
field lines: B has to decrease
with radius. The Laplace force
pulls a charge at I (velocity
pointing out of the page)
toward the median plane. In-
creasing the field gradient (k
closer to -1, gap opening up
faster) increases the focusing

F
B=B y    

B

Median
plane

y

g
(r

)

Magnet pole, South

Magnet pole, North

F

B

   

I

I

r

967

Fig. 3.10 Radial motion sta-
bility in an axially symmetric
structure. Arrowed arcs are
trajectories of particles with
momentum p=mv. Dashed
arcs are centered at C, center
of the cyclotron. The resul-
tant Ft = −qvB + mv2/r ,
is zero at I: B0R0 = mv/q.
The resultant at i is to-
ward I if qvBi < mv2/Ri ,
i.e. BiRi < mv/q; the
resultant at e is toward I
if qvBe > mv2/Re , i.e.

BeRe > mv/q

2

force toward Iforce toward I

BR<mv/q BR>mv/q  BR=
mv/q

rB
decreases        

  increases       
 R

mv /R

                   

s

x

I

y

i e

qvB    

O

R0

C

Note By(R0) = B0 and introduce968

ω2
R = ω

2
rev(1 +

R0

B0

∂By

∂R
), ω2

y = −ω2
rev

R0

B0

∂By

∂R
(3.10)

equations 3.9 can thus be written under the form969

Üx + ω2
Rx = 0 and Üy + ω2

yy = 0 (3.11)
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Fig. 3.11 Geometrical focus-
ing: in a flat field, k=0, the
two circular trajectories at
r = R0 ± δR (solid lines)
undergo exactly one oscil-
lation around the reference
orbit r = R0. A positive k
increases the convergence
(square markers - but then the
vertical motion diverges from
the median plane), a negative
k decreases the convergence
(triangles)

 0  0.05  0.1  0.15  0.2

k=0

k<0

k>0

R
0

R
0
-δ

R

R
0
+

δ
R

A restoring force (linear terms in x and y, Eq. 3.11) arises from the radially varying970

field, characterized by a field index971

k =
R0

B0

∂By

∂R

����
R=R0,y=0

(3.12)

and adds in the radial motion to the focusing due to the curvature (the term “1” in972

ω2
R

, Eq. 3.10).973

Axial stability in a cyclotron requires a restoring force directed toward the median974

plane. Referring to Fig. 3.9, this means Fy = −ay (with the a factor some positive975

quantity) and thus BR < 0, at all (r, y , 0). This is achieved by designing a guiding976

field which decreases with radius, ∂BR

∂y
< 0. Referring to Eq. 3.12 this translates into977

k < 0.978

Radial stability in a constant field is a geometrical property, resulting from the979

curvature of the trajectory (Fig. 3.11). In a weakly decreasing field B(R) on the980

other hand, a particle with momentum p = mv sinusoiding around the R0-radius981

reference circle experiences in the Serret-Frénet frame a total force Ft = −qvB+m
v

2

r
982

(Fig. 3.10) of which the (outward) component fc = m v2

r decreases with r at a higher983

rate than the decrease of the Laplace (inward) component fB = −qvB(r). In other984

words, radial stability requires BR to increase with R, ∂BR
∂R = B + R ∂B

∂R ≥ 0, this985

holds in particular at R0, thus 1 + k ≥ 0.986

The condition for transverse motion stability around the circular equilibrium orbit987

results from these axial and radial stability conditions, namely,988

−1 ≤ k < 0 (3.13)

Note regarding the geometrical focusing: the focal distance associated with the

curvature of a magnet of arc length L is obtained by integrating d2x
ds2 +

1
R2

0

x = 0 and

identifying with the focusing property ∆x′
= −x/f, namely,
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∆x′
=

∫
d2x

ds2
ds ≈ −x

R2

∫
ds =

−xL
R2
, thus f =

R2

L

Isochronism989

The relativistic increase of the mass precludes strict isochronism: the revolution990

frequency slowly decreases with the energy of the particle on its spiraling out991

trajectory (Eq. 3.2). The focusing condition −1 < k < 0 (B deceasing with R) further992

contributes breaking the isochronism by virtue of ωrev ∝ B. As a consequence, the993

phase of the oscillating voltage at arrival of a particle at the accelerating gap (the994

so-called RF phase) changes turn after turn. This is addressed further in Sec. 3.1.3.995

Paraxial Transverse Coordinates996

Introducing the path variable, s, as the independent variable in Eq. 3.11 and using997

the approximation ds ≈ vdt (i.e., neglecting the transverse velocity components), the998

equations of motion in the moving frame (Eq. 3.11) take the form999

d2x

ds2
+

1 + k

R2
0

x = 0 and
d2y

ds2
− k

R2
0

y = 0 (3.14)

Given −1 < k < 0 the motion is that of a harmonic oscillator, in both planes, with1000

respective restoring constants (1 + k)/R2
0 and −k/R2

0 , both positive quantities. The1001

solution is a sinusoidal motion,1002

{
R(s) − R0 = x(s) = x0 cos

√
1+k
R0

(s − s0) + x′
0

R0√
1+k

sin
√

1+k
R0

(s − s0)
R′(s) = x ′(s) = −x0

√
1+k
R0

sin
√

1+k
R0

(s − s0) + x′
0 cos

√
1+k
R0

(s − s0)
(3.15)

1003 {
y(s) = y0 cos

√
−k

R0
(s − s0) + y′

0
R0√
−k

sin
√
−k

R0
(s − s0)

y′(s) = −y0

√
−k

R0
sin

√
−k

R0
(s − s0) + y′

0 cos
√
−k

R0
(s − s0)

(3.16)

The dissymmetry between the two frequencies, a “1” in “
√

1 + k” compared to
√
−k,1004

stems from the geometrical focusing resulting from the curvature.1005

Two wave numbers may be introduced,1006

νR =
ωR

ωrev
=

√
1 + k and νy =

ωy

ωrev
=

√
−k (3.17)

i.e., the number of sinusoidal oscillations of the paraxial motion about the reference1007

circular orbit over a turn, respectively radial and axial. Both are less than 1: there1008

is less than one sinusoidal oscillation in a revolution. In addition, as a result of the1009

revolution symmetry,1010



3.1 Theory, Basic Concepts 27

ν2R + ν
2
y = 1 (3.18)

Phase Space1011

Phase space at an azimuth s around the ring is a Cartesian space with, regarding1012

transverse particle motion, position as the horizontal axis and angle as the vertical1013

axis, i.e., (x(s), x ′(s) = dx/ds) and (y(s), y′(s) = dy/ds) (Eqs. 3.15 3.16), or akin1014

quantities, this is illustrated in Fig. 3.12.1015

Fig. 3.12 Particle motion ob-
served in transverse horizontal
phase space at some fixed az-
imuth s = Rθobs along the cy-
clotron circumference, at suc-
cessive times (or turns: 1, 2, 3,
...). The horizontal axis here
is x(θobs), the vertical axis

is 1
νR

dx
dθ

���
θ=θobs

, using these

coordinates the motion is on
a circle of radius x̂. Note that
{x(θobs) = x̂ cos(νRθobs + φ)
and 1

νR

dx
dθ

���
θ=θobs

=

−x̂ sin(νRθobs + φ) } es-
tablishes that phase space
motion is clockwise

1
2

6

4

x

5

2πν
3

(1/ )dx/d  ν   θ

Longitudinal phase space coordinates are the RF phase φ (Fig. 3.7, Eq. 3.3) and1016

energy offset, or akin quantities.1017

A point in phase space represents the position of a particle at azimuth s at time t.1018

Particle motion over time depends on the field experienced and on two initial1019

conditions (initial position and angle, or RF phase and energy offset, ...). It is1020

impossible for two trajectories with different origins to coincide in phase space, at1021

any azimuth.1022

Off-Momentum Motion1023

Momenta of particles that make up a bunch accelerated in a cyclotron span some1024

extent ±∆p/p.1025

In an axially symmetric structure, the equilibrium trajectory at momentum
{

pA

pB = pA + ∆p
is at radius

{
RA such that BARA = pA/q
RB such that BBRB = pB/q

, with

{
BB = BA +

(
∂B
∂x

)

0
+ ...

RB = RA + ∆x
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On the other hand

BBRB =
pB

q
⇒

[
BA +

(
∂B

∂x

)

0

∆x + ...

]
(RA + ∆x) = pA + ∆p

q
=

pA

q
+

∆p

q

thus, neglecting terms in (∆x)2,

BARA +

(
∂B

∂x

)

0

RA∆x + BA∆x =
pA

q
+

∆p

q
,

which, given BARA =
pA

q , leaves ∆x
[(

∂B
∂x

)

A
RA + BA

]
=

∆p
q , which given k =1026

RA
BA

(
∂B
∂x

)

0
yields1027

∆x =
RA

1 + k

∆p

pA
(3.19)

Drop the indices, take p as a reference momentum and R as the corresponding

R

y

A B

RA RB

Magnet pole

Magnet pole
R

R

p

B

A

.

pA

B

Fig. 3.13 The equilibrium radius at location A is R = RA, the equilibrium momentum is pA,
rigidity BR = BARA. The equilibrium radius at B is R = RB, equilibrium momentum pB, rigidity
BR = BBRB

1028

reference orbit radius, this leaves1029

∆x = D
∆p

p
with D =

R

1 + k
, dispersion function (3.20)

The dispersion D is an s-independent quantity in the classical cyclotron as a result of1030

the cylindrical symmetry of the field (k and R=p/qB are s-independent), and varies1031

with R and k(R).1032

To the first order in the coordinates, the vertical coordinates y(s), y’(s) (Eq. 3.16)1033

are unchanged under the effect of a momentum offset, the horizontal trajectory angle1034

x’(s) is unchanged as well (the circular orbits are concentric, Fig. 3.13) whereas1035

x(s, p + ∆p) = x(s, p) + ∆p
dx

dp

����
s,p

= x(s) + D
∆p

p
(3.21)
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with x(s) as in Eq. 3.15.1036

Orbit and revolution period lengthening1037

Momentum offset results in closed orbit lengthening δC/C = δR/R ≡ δx/R, which,1038

given Eq. 3.20, can be written under the form1039

δC
C = α

δp

p
with α =

1

1 + k
=

1

ν2
R

(3.22)

with α the “momentum compaction” and α > 0, the closed orbit length increases1040

with momentum.1041

The change in revolution period Trev = C/βc with momentum writes1042

δTrev

Trev
=

δC
C

− δβ
β
= (α − 1

γ2
)δp

p
(3.23)

Given that −1 < k < 0 and γ & 1, it results that α − 1/γ2 > 0 thus δTrev/Trev > 0 as1043

expected: the revolution period increases with energy, the increase in radius is faster1044

than the velocity increase.1045

3.1.3 Quasi-Isochronous Resonant Acceleration1046

An oscillating radio-frequency (RF) electric field, with fixed-frequency frf is applied1047

across the gap between the two dees (Fig. 3.1). An ion of charge q reaching the gap1048

at time t undergoes a change in energy1049

∆W(t) = qV̂ sin φ , with φ = ωrf t − (ωrevt + φ0) (3.24)

with φ the RF phase experienced by the particle at the time it crosses the gap and φ01050

the origin in phase for the particle motion. This ignores the “transit time”, the effect1051

of the time that the particle spends across the gap on the overall energy gain.1052

The frequency dependence of the kinetic energy W of the ion relates to its orbital1053

radius R in the following way:1054

W =
1

2
mv2
=

1

2
m(2πRfrev)2 =

1

2
m(2πRfrf

h
)2 (3.25)

thus, given cyclotron size (R), frf and h set the limit for the acceleration range.1055

The revolution frequency decreases with energy and the condition of synchronism1056

with the oscillating voltage, frf = hfrev, is only fulfilled at one particular radius in the1057

course of acceleration, where ωrf = qB/m (Fig. 3.14). Upstream and downstream1058

of that radius, out-phasing ∆φ builds-up turn after turn, decreasing in a first stage1059
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(towards lower voltages in Fig. 3.14-right) and then increasing back to φ = π/2 and1060

beyond towards π. Beyond φ = π the RF voltage is decelerating.

B [T]

0 50 100

ω   > ω ω   < ω
rev       rf rev       rf

∆φ < 0 ∆φ > 0

R [cm]

0.5

qB/mω   = 

isochronism

rf
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 at one point

∆φ=0
(f    = f    )  rf        rev

|
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Fig. 3.14 A sketch of the synchronism condition at one point (left, h=1 assumed), and the span in
phase of the energy gain ∆W = qV̂ sinφ over the acceleration cycle (right). φ is the phase of the
RF sine wave at arrival of the particle at the accelerating gap (the vertical separation of the two
∆W(φ) branches on the right (∆φ < 0 and ∆φ > 0) is artificial, this is for clarity, they are actually
superimposed)

1061

Differentiating the particle phase at the RF gap (Eq. 3.24), over a half-turn, with1062

ωrev constant between two gap passages, one gets Ûφ = ωrf − ωrev . Between two gap1063

passages on the other hand, ∆φ = Ûφ∆T = ÛφTrev/2 = Ûφ πR
v

, yielding a phase-shift of1064

half-turn ∆φ = π

(
ωrf

ωrev(R)
− 1

)
= π

(
mωrf

qB(R) − 1

)
(3.26)

The out-phasing is thus a gap-after-gap, cumulative effect. Due to this the classi-1065

cal cyclotron requires quick acceleration (limited number of turns), which means1066

high voltage (tens to hundreds of kVolts). As expected, with ωrf and B constant, φ1067

presents a minimum ( Ûφ = 0) at ωrf = ωrev =
qB
m where exact isochronism is reached1068

(Fig. 3.14). The upper limit to φ is set by the condition ∆W > 0: acceleration.1069

The cyclotron equation determines the achievable energy range, depending on1070

the injection energy E0, the RF phase at injection φ0, the RF frequency ωrf and gap1071

voltage V̂ , following [12]1072

cos φ = cos φ0 + π

[
1 − ωrf

ωrev

E + E0

2M

]
E − E0

qV̂
(3.27)

(E=Ek + M is the total energy, M is the rest mass, the index 0 denotes injection1073

parameters) and is represented in Fig. 3.15 for various values of the RF voltage and1074

phase at injection φ0.1075
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Fig. 3.15 A graph of the
cyclotron equation (Eq. 3.27),
for a few different RF settings.
The sole settings resulting
in a cosφ curve comprised
in [−1, 1] allow complete
acceleration from injection
to top energy. For instance,
for injection φ0 = π/4,
acceleration to 20 MeV is not
possible (upper three curves).
Acceleration to 20 MeV works
with φ0 = 3π/4, with as low
as 100 kV/gap (lower three
curves)
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3.1.4 Extraction1076

From R = p/qB and assuming constant field (legitimate in the presence of a very1077

small field index), with kinetic energy Ek = p2/2M in the non-relativistic approxi-1078

mation (Ek ≪ M), one gets1079

dR

R
=

1

2

dEk

Ek

(3.28)

Integrating the right hand side equality yields1080

R2
= R2

0

Ek

Ek,0
(3.29)

with R0, Ek,0 initial conditions. From Eqs. 3.28, 3.29, assuming Ek,0 ≪ Ek and1081

constant acceleration rate dEk such that Ek = n dEk after n turns, one gets the1082

scaling laws1083

R ∝
√

n, dR ∝ R

Ek

∝ 1

R
∝ dEk,

dR

dn
=

R

2n
(3.30)

so that, in particular, the turn separation dR/dn is proportional to the average orbit1084

radius R and to the energy gain per turn.1085

The radial distance between successive turns decreases with energy, toward zero1086

(Fig. 3.16), eventually resulting in insufficient spacing for insertion of an extraction1087

septum.1088

Betatron modulation1089

Consider a particle bunch injected in the cyclotron with some (x0, x
′
0) conditions, and1090

assume very slow acceleration. While accelerated the bunch undergoes a betatron1091

motion around the local closed orbit, following Eq. 3.15. Observed at some azimuth1092
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Fig. 3.16 The radial distance
between successive turns
decreases with energy, in
inverse proportion to the orbit
radius
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s, this betatron oscillation modulates the distance of the bunch to the local reference1093

closed orbit, moving it outward or inward depending on the turn number, which1094

means a modulation of the distance between the accelerated turns: an effect that1095

can be exploited for increasing the separation of consecutive orbits at extraction to1096

enhance the extraction efficiency [8].1097

3.1.5 Spin Dance1098

An effect of a magnetic field B on a spin angular momentum S, as a consequence of1099

the resulting torque, is the spin precession, around the precession vector (Sec. 18.6.1)1100

ωsp =
q

m

[
B + G(B‖ + γB⊥)

]
(3.31)

at an angular frequency |ωsp |, with B = B‖ + B⊥, B‖ and B⊥ the magnetic field1101

components respectively parallel and normal to the particle velocity, and G the1102

anomalous gyromagnetic factor:1103

G=1.7928474 (proton), -0.178 (Li), -0.143 (deuteron), -4.184 (3He) ...1104

The spin precession in B satisfies the Thomas-BMT differential equation1105

dS

dt
= S × ωsp (3.32)

If the particle moves in the median plane of a cyclotron then B‖ = 0 and the1106

precession axis is parallel to the magnetic field vector, By , namely ωsp =
q

m
(1 +1107

Gγ)By . The precession angle writes1108

θsp, Lab =
1

v

∫
ωsp ds = (1 + Gγ)

∫
B ds

BR
= (1 + Gγ)α (3.33)
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with α the trajectory bend angle (Fig. 3.17). The precession angle in the moving

Fig. 3.17 Spin and velocity
vector precession in a constant
field, from S to S′ and v to
v′ respectively. In the moving
frame the spin precession
along the arc L = Rα

is Gγα, in the laboratory
frame the spin precesses by
(1 +Gγ)α

R

y

v

S x

α

xy

S

x’

G
γα

(1
+

G
γ)α

S
’

v’

1109

frame (the latter rotates by an angle α across the magnet) is1110

θsp = Gγα (3.34)

from what it results that the number of precessions per turn is Gγ. By analogy with1111

the betatron tune (the number of sinusoidal oscillations per turn around the reference1112

circle, Eq. 3.17) this defines the spin tune1113

νsp = Gγ (3.35)
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3.2 Exercises1114

Preliminaries1115

• Zgoubi users’ guide at hand, when setting up the input data files to work out1116

the exercises, is a must-have. PART B of the guide in particular, details the1117

formatting of the input data lists following keywords (a few keywords only, for1118

instance FAISCEAU, MARKER, YMY, do not require additional data), and gives1119

the units to be used.1120

• Regarding keywords: by “keyword” it is meant, the name of the optical elements,1121

or I/O procedures, or commands, as they appear in a simulation input data file.1122

Keywords are most of the time referred to without any additional explanation: it1123

is understood that the users’ guide is at hand, and details regarding the use and1124

functioning to be sought there: in PART A of the guide, as to what a particular1125

keyword does and how it does it; in PART B as to the formatting of the data1126

list under a particular keyword. The users’ guide INDEX is a convenient tool to1127

navigate amongst keywords. A complete list may also be found in the “Glossary1128

of Keywords”, at the begining of both PART A and PART B of the users’ guide,1129

and an overview of what they can be used at is given in “Optical elements versus1130

keywords”.1131

– The concise notation KEYWORDS[ARGUMENT1, ARGUMENT2, ...] used1132

in the exercise: it follows the nomenclature of the Users’ Guide, Part B. Con-1133

sider a couple of examples:1134

· OBJET[KOBJ=1] stands for keyword OBJET, and the value of KOBJ=11135

retained here;1136

· OPTIONS[CONSTY=ON] stands for keyword OPTIONS, and the option1137

retained here, CONSTY, switched ON.1138

– The keyword INCLUDE is used in many simulation input data files. The1139

reason is mostly to reduce the length of these files (which would otherwise1140

be prohibitively voluminous). Just as with the Latex, or Fortran, “include”1141

command, a segment of an optical sequence subject to an INCLUDE may1142

always be replaced by that very sequence segment.1143

• Coordinate Systems: two sets of coordinate notations are used in the exercises,1144

– on the one hand (and, in the Solutions Section mostly), zgoubi’s (Y,T,Z,P,X,D)1145

coordinates in the optical element reference frame (O;X,Y,Z), the very frame1146

in which the optical element field E(X,Y, Z) and/or B(X,Y, Z) is defined (the1147

origin for X depends on the optical element). Particle coordinates in this frame1148

can be1149

· either Cartesian, in which case X, Y (angle T) and Z (angle P) denote1150

respectively the longitudinal, transverse horizontal and vertical coordinates,1151

· or cylindrical, in which case, given m the projection of particle position M1152

in the Z=0 plane, Y denotes the radius: Y = |Om|, whereas X denotes the1153
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Fig. 3.18 Zgoubi Cartesian frame (O;X,Y,Z), and moving frame (O;s,x,y)

OX-Om angle (and, yes, the nature of the variables named X and Y in the1154

source code does change);1155

Note: the sixth zgoubi’s coordinate above is

D =
particle rigidity

BORO

with BORO a reference rigidity, the very first numerical datum to appear in1156

any zgoubi sequence, as part of the definition of initial particle coordinates by1157

OBJET or MCOBJET. BORO may sometimes be denoted Bρref , depending1158

upon the context. Note that D-1 identifies with the above δp/p.1159

– on the other hand (and, in the exercise assignments mostly), the conventional1160

(x,x’,y,y’,δl,δp/p ) coordinates in the moving frame (O;s,x,y) or close variants.1161

Comments are introduced wherever deemed necessary (hopefully, often enough)1162

in an effort to lift potential ambiguities regarding coordinate notations.1163

3.1 Modeling a Cyclotron Dipole: Field Map1164

In this exercise, a cyclotron dipole field is simulated using a field map. A field1165

map is an easy way to simulate a magnet, this is a major interest of the method. It can1166

account for fancy geometries and fields, including field index and non-linearities,1167

field defects. Depending on field symmetries it may be 1-, 2-, or 3-dimensional. It can1168

be generated using mathematical field models, or from magnet computation codes, or1169

from magnetic measurements. In this exercise a model of a cyclotron field is devised1170

using such field map method. The model is based on a calculated two-dimensional1171

map of the mid-plane field, with 180 deg or 60 deg angular extent; TOSCA keyword1172

is used to raytrace through these maps.1173

The first step in this exercise consists in fabricating that field map.1174

A 2-dimensional m(R, θ) polar meshing of the median plane is considered1175

(Fig. 3.19). It is defined in a (O; X,Y) frame and covers a 1800 sector (or 60 deg, in1176

some of the exercises). The median plane field map provides the values of the field1177

components BZ(R, θ) normal to the Z = 0 plane, at the nodes of the mesh. Note1178
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that a single 360o field map could be used instead, however implementing two 180o1179

sectors will allow further insertion of an accelerating gap, between the two 1800
1180

sectors. Computation of the field along (R, θ) particle trajectories in the (O;X,Y,Z)1181

frame is performed from the field map data, using interpolation techniques [13].1182

Fig. 3.19 Principle of a
field map in a polar coordinate
system, covering a 180o sector
(over the right hand side dee).
The mesh nodes m(R, θ)
are distant ∆R radially, ∆θ
azimuthally. The map is used
twice, so covering the 360o

cyclotron dipole as sketched
here, while allowing further
insertion of an accelerating
gap between the two dees

O

X

Y

m(R,  )θ

θ

R

R∆

    

∆θ  

(a) Construct a 180o two-dimensional map of a median plane field BZ(R, θ),1183

proper to simulate the field in a cyclotron as sketched in Fig. 3.1. Use a uniform1184

mesh in a polar coordinate system (R, θ) as sketched in Fig. 3.19, covering from R=11185

to 76 cm. Take a radial increment of the mesh ∆R = 0.5 cm, azimuthal increment1186

∆θ = 0.5 cm/RM, RM some arbitrary reference radius (say, 50 cm, here), and1187

constant axial field BZ = 0.5 T. The appropriate 6-column formatting of the field1188

map data for TOSCA to read them is the following:1189

R cos θ, Z, R sin θ, BY, BZ, BX1190

with θ varying first, R varying second in that list. Z is the vertical direction (normal1191

to the map mesh), Z ≡ 0.1192

Produce a graph of BZ(R, θ).1193

(b) Raytrace a few concentric circular mid-plane trajectories centered on the1194

center of the dipole, ranging in 10 ≤ R ≤ 80 cm. Produce a graph of these concentric1195

trajectories in the (O; X,Y ) laboratory frame. Initial coordinates can be defined using1196

OBJET, particle coordinates along trajectories during the stepwise raytracing can be1197

logged in zgoubi.plt by setting IL=2 under TOSCA.1198

Explain why it is possible to push the raytracing beyond the 76 cm radius field1199

map extent, without loss of accuracy.1200

(c) Compute the orbit radius R and the revolution period Trev as a function of1201

kinetic energy Ek, or rigidity BR. Produce a graph, including for comparison the1202

theoretical dependence of Trev. Explain what causes the slow increase of revolution1203

period with energy.1204

(d) Check the effect of the density of the mesh (the choice of ∆R and ∆θ values,1205

i.e., the number of nodes Nθ × NR = (1+ 180o

∆θ
) × (1+ 80 cm

∆R
)), on the accuracy of the1206

trajectory and time-of-flight computation.1207
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(e) Consider a mesh with such ∆R, ∆θ density as to ensure reasonably good1208

convergence of the numerical resolution of the differential equation of motion [13,1209

Eq. 1.2.4].1210

Check the effect of the integration step size on the accuracy of the trajectory1211

and time-of-flight computation, by considering a small ∆s = 1 cm and a large1212

∆s = 20 cm, at 200 keV and 5 MeV (assume proton).1213

(f) Consider a periodic orbit, thus its radius R should remain unchanged after1214

stepwise integration of the motion over a turn. However, the size ∆s of the numerical1215

integration step has an effect on the final value of the radius:1216

for two different cases, 200 keV (a small orbit) and 5 MeV (a larger one), provide1217

the dependence of the relative error δR/R after one turn, on the integration step size1218

∆s (consider a series of ∆s values in a range ∆s : 0.1 mm → 20 cm). Plot the two1219

δR
R
(∆s) curves (200 keV and 5 MeV), explain their upward concavity.1220

3.2 Modeling a Cyclotron Dipole: Analytical1221

This exercise is similar to exercise 3.1, the difference is that an analytical modeling1222

of the field is used here, rather than a field map. The same polar coordinate system1223

(R, θ, Z) is considered, with vertical axis Z normal to the (R, θ) plane (Fig. 3.20).1224

Fig. 3.20 Polar frame.
DIPOLE provides the value
BZ (m) of the median plane
field at m, projection of parti-
cle position M(R, θ, Z) in the
median plane (R, θ)

z

  = 0

mR

θ

θ

B

M

The vector field B(R, θ,Z) at any location M(R, θ, Z) of a particle along its1225

trajectory is modeled using DIPOLE (a convenient choice among other possibilities1226

found in zgoubi optical element library). DIPOLE provides the Z-parallel median1227

plane field B(R, θ,Z = 0) ≡ BZ(R, θ,Z = 0), and B(R, θ,Z) off the median plane is1228

obtained by Taylor expansion (accounting for Maxwell’s equations).1229

(a) Simulate a 180o sector dipole; DIPOLE requires a reference radius, RM, for1230

the sake of consistency with other exercises, it is suggested to take RM=50 cm. Take1231

a constant axial field BZ = 0.5 T.1232

Explain the various data (geometry, role of RM, field and field indices, fringe1233

fields, integration step size, etc.) that define the field simulation in DIPOLE - refer1234

to the Users’ Guide [13].1235

Produce a graph of BZ(R, θ).1236

(b) Repeat question (b) of exercise 3.1.1237
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(c) Repeat question (c) of exercise 3.1.1238

(d) As in question (e) of exercise 3.1, check the effect of the integration step size1239

on the accuracy of the trajectory and time-of-flight computation.1240

Repeat question (f) of exercise 3.1.1241

(e) From the two series of results (exercise 3.1 and the present one), comment on1242

various pros and cons of the two methods, field map versus analytical field model.1243

3.3 Geometrical Focusing1244

Because the field is constant over the all space (B ≡ BZ and |BZ | =constant, ∀1245

X, Y, Z), there is no vertical focusing: any trajectory with a non-zero vertical angle1246

would spiral away, vertically, with constant pitch angle.1247

(a) Using the foregoing field model, verify that this is what the numerical inte-1248

gration yields.1249

Produce a 3-D graph of the trajectory, superpose theory (use the parametric1250

equations of motion) and numerical integration.1251

(b) Instead, horizontal motion features geometrical focusing, this is due to the1252

trajectory curvature. Show the geometrical focusing graphically.1253

3.4 Relativistic Kinematic Relationships1254

In the subsequent exercises, relativistic kinematic quantities will be used, this1255

exercises introduces some differential relations between them which will also be1256

resorted to.1257

(a) Demonstrate the following relativistic relations (M=rest mass, Ek=kinetic1258

energy, E = Ek +M , c=1; γ may vary in electrostatic elements or in the RF cavities1259

of an accelerator):1260

dp

p
=

1

β2

dE

E
, dp =

dE

β
1261

dv

v
=

dβ

β
=

1

γ2

dp

p
=

1

β2γ2

dE

E
=

1

β2γ2

dγ

γ
1262

dγ

γ
=

dE

E
=

dMγ

Mγ
=

dEk

Ek +M
1263

dE

E − M
=

dEk

Ek
=

γ + 1

γ

dp

p
1264

(b) Produce the evolution of these quantities numerically, compare these numer-1265

ical results with theoretical expectations from (a).1266

(c) Using the random particle generator MCOBJET, produce a 2 × 104 bunch1267

of protons with Gaussian dp/p, σdp/p = 10−3. Plot some of the densities above and1268

check the equalities in (a).1269

3.5 Resonant Acceleration1270

Based on the earlier dipole sector, using indifferently a field map or an analytical1271

model of the field, introduce an accelerating gap between the two dees with peak1272

voltage 100 kV. Assume that particle motion does not depend on RF phase: the boost1273

through the gap is the same at all passes, CAVITE[IOPT=3] can be used for that.1274
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(a) Accelerate a proton with initial kinetic energy 20 keV, up to 5 MeV, take1275

harmonic h=1. Produce a graph of the accelerated trajectory in a (O; X,Y) frame1276

similar to that in Fig. 3.19.1277

(b) Plot the proton momentum p and total energy E as a function of its kinetic1278

energy, both from this numerical experiment (raytracing data can be stored using1279

FAISTORE) and from theory, everything on the same graph.1280

(c) Plot the normalized velocity β = v/c as a function of kinetic energy, both1281

numerical and theoretical, and in the latter case both classical and relativistic.1282

(d) Plot the relative change in velocity ∆β/β and the relative change in circum-1283

ference ∆C/C, as a function of kinetic energy. both numerical and theoretical. From1284

their evolution, conclude that the time of flight increases with energy.1285

3.6 Resonant Acceleration (2)1286

Re-do the previous exercise, assuming a harmonic h=3 RF frequency.1287

3.7 Visit High Energies1288

Forget the fact that this not possible in a classical cyclotron (use CAVITE[IOPT=3]),1289

and push proton energy to 3 GeV kinetic, re-do questions (a) to (d) of Ex. 3.5.1290

Note:1291

- pushing the energy in this manner is only possible if acceleration at the gap is1292

independent of particle phase, hence the necessary choice of CAVITE[IOPT=3],1293

- if a field map model is used, it is perhaps, or perhaps not, necessary to extend the1294

radial extent of the mesh to encompass the spiraling trajectory up to 3 GeV - please1295

clarify that point,1296

- in the case the analytical model DIPOLE is used instead, surely no modification1297

is needed, its data remain unchanged, figure that out.1298

3.8 Spin Dance1299

(a) From the analogy between the vector precession equations,1300

Ûv = q

m
v × B, particle velocity vector, on the one hand1301

ÛS = S × ωsp, particle spin vector, on the other hand (Eq. 18.28),1302

and from the expression for the particle trajectory rotation angle α =
∫

B ds/BR as1303

stems from the former, deduce the expression for the spin rotation angle in constant1304

vertical B field - no calculations needed.1305

In the following the cyclotron model of exercise 3.1 or 3.2 indifferently can be1306

used.1307

(b) Add spin transport, using SPNTRK. Produce a listing (zgoubi.res) of a simu-1308

lation, including spin outcomes.1309

Note: PARTICUL is necessary here, in order for the equation of motion to be1310

solved [13, Sec. 2]. SPNPRT can be used to have local spin coordinates listed in1311

zgoubi.res (at the manner FAISCEAU lists particle coordinates).1312

(c) Consider proton case, initial spin longitudinal, compute the spin precession1313

over one revolution, as a function of energy over a range 12 keV→5 MeV. Give a1314

graphical comparison with theory.1315
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FAISTORE can be used to store local particle data, which include spin coordi-1316

nates, in a zgoubi.fai style output file. IL=2 can be used to obtain a print out of1317

particle motion data to zgoubi.plt during stepwise integration.1318

(d) Inject a proton with longitudinal initial spin Si . Give a graphic of the longi-1319

tudinal spin component motion as a function of azimuthal angle, over a few turns1320

around the ring. Deduce the spin tune from this computation. Repeat for a couple of1321

different energies.1322

Place both FAISCEAU and SPNPRT commands right after the first dipole sector,1323

and use them to check the spin rotation and its relationship to particle rotation, right1324

after the first passage through that first sector.1325

(e) Spin dance: the optical sequence here is assumed to be a complete turn (i.e.,1326

six DIPOLEs if a 60 deg DIPOLE model is used). Inject an initial spin at an angle1327

from the horizontal plane (this is in order to have a non-zero vertical component),1328

produce a 3-D animation of the spin dance around the ring, over a few turns.1329

(f) Repeat questions (b-e) for two additional particles: deuteron (much slower1330

spin precession), 3He2+ (much faster spin precession).1331

3.9 Synchronized Spin Torque1332

A synchronized spin kick is superimposed on orbital motion. A input data file1333

file accounting the simulation of a complete cyclotron is considered as in (e), for1334

instance six 60 degree DIPOLEs, or two 180 degree DIPOLEs, etc.1335

Insert a spin rotation of a few degrees around the longitudinal axis, at the end1336

of the optical sequence (i.e., after one orbit around the cyclotron). SPINR can be1337

used for that, to avoid any orbital effect. Track 4 particles on their closed orbit, with1338

respective energies 0.2, 108.412, 118.878 and 160.746 MeV.1339

Produce a graph of the motion of the vertical spin component Sy along the circular1340

orbit.1341

Produce a graph of the spin vector motion on a sphere.1342

Explain the results.1343

3.10 Introducing a Radial Field Index1344

(a) Reproduce Fig. 3.11.1345

(b) Ray trace over a few turns with some −1 < k < 0 value, to show the sinusoidal1346

horizontal motion. Show the horizontal motion instability when k < −1.1347

(c) Add vertical motion and show the vertical sinusoidal oscillation with k < 0,1348

show the vertical instability if k > 0.1349

3.11 Weak Focusing1350

(a) Consider a 60o sector as in earlier exercises (building a field map as in1351

exercise 3.1, or using DIPOLE as in exercise 3.2), construct the sector accounting1352

for a non-zero radial index k in order to introduce vertical focusing, say k = −0.03,1353

assume a reference radius R0 for a reference energy of 200 keV (R0 and B0 are1354

required in order to define the index k, Eq. 3.12). Raytrace that 200 keV reference1355

orbit, plot it in the lab frame: make sure it comes out as expected, namely, constant1356

radius, final and initial angles equal (normally null given the working hypotheses, as1357

established in previous exercises).1358
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(b) Find and plot the radius dependence of orbit rigidity, BR(R), from raytracing1359

over a BR range covering 20 keV to 5 MeV.1360

(c) Produce a graph of the paraxial axial motion of a 1 MeV proton, over a1361

few turns (use IL=2 under TOSCA to have stepwise integration data logged in1362

zgoubi.plt). Check the effect of the focusing strength by comparing the trajectories1363

for a few different index values, including close to -1 and close to 0.1364

(d) Produce a graph of the magnetic field experienced by the particle along these1365

trajectories.1366

3.12 Loss of Isochronism1367

Compare on a common graphic the revolution period Trev(R) for a field index1368

value k ≈ −0.95, −0.5, −0.03, 0−. The scan method of exercise 3.11, based on1369

REBELOTE, can be referred to.1370

3.13 Particle Trajectories1371

In this exercise individual particle trajectories are computed. DIPOLE or TOSCA1372

can be used, indifferently. No acceleration in this exercise, particles cycle around the1373

cyclotron at constant energy.1374

(a) Produce a graph of the horizontal and vertical trajectory components x(s) and1375

y(s) of a particle with rigidity close to BR(R0) (Ro is the reference radius in the1376

definition of the index k), over a few turns around the cyclotron. From the number of1377

turns, give an estimate of the wave numbers. Check the agreement with the expected1378

νR(k), νy(k) values from Eq. 3.17.1379

Consider particle energies of 1 MeV and 5 MeV, far from the reference kinetic1380

energy E(R0); the wave numbers change with energy: could that be expected? Find1381

their theoretical values, compare with numerical outcomes.1382

(b) In the former case, 200 keV energy, plot as a function of s the difference1383

between x(s) from raytracing and its values from Eq. 3.15. Same for y(s) compared1384

to Eq. 3.16. Is there agreement? (use the option IL=2 to store particle coordinates in1385

zgoubi.plt, step-by-step).1386

3.14 Energy Dependence of Wave Numbers1387

Perform a scan of the wave numbers over 200 keV−5 MeV energy interval, com-1388

puted using MATRIX, and using REBELOTE to repeat MATRIX computation for1389

a series of energy values.1390

3.15 Phase Space Motion, Fourier Analysis1391

This exercise introduces to phase space and phase space motion, and to spectral1392

analysis of particle motion.1393

Raytrace a particle with small amplitude radial and axial oscillations with respect1394

to the reference circular closed orbit (paraxial motion), at constant energy.1395

(a) At some fixed azimuth s around the cyclotron, observe the radial excursion1396

(x(n),x’(n)) of the particle as it cycles around for many turns (n is the turn number)1397

(use FAISTORE to store particle coordinates in zgoubi.fai, turn by turn). Produce a1398

graph of (x(n), x ′(n)) in the transverse phase-space (x, x ′).1399

Repeat for (y,y’).1400
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(b) From the trajectory equation (Eq. 3.15, radial motion, or Eq. 3.16, axial1401

motion), show that particle motion in phase space is on an ellipse. Calculate the1402

ellipse parameters. Verify graphically that it superposes on the particle motion from1403

multiturn raytracing.1404

(c) Compute the radial and axial wave numbers by Fourier analysis of respectively1405

the x(n) and the y(n) motion. Check the agreement with the expected νR(k), νy(k)1406

values from theory.1407

(d) Constant energy motion spectrum:1408

(i) there is an indetermination on the value of the wave number, from the Fourier1409

analysis, explain1410

(ii) give a theoretical calculation of the accuracy on the position of the peak from1411

the DFT technique. Check this against the numerical computation by varying the1412

spectrum sampling in the DFT series1413

(iii) explain the origin of the sin u/u shape of the spectrum. Calculate the spacing1414

between the zeroes, from theory, compare with the zeroes of the numerical DFT.1415

3.16 RF Phase at the Accelerating Gap1416

(a) Consider the cyclotron model of exercise 3.11: two dees, double accelerating1417

gap, field index k = −0.03 defined at R0 = 50 cm, field B0 = 5 kG on that radius.1418

Raytrace a proton trajectory from 1 to 5 MeV: get the turn-by-turn phase-shift at
the gaps, compare with (Eq. 3.26)

half-turn ∆φ = π

(
ωrf

ωrev(R)
− 1

)
= π

(
mωrf

qB(R) − 1

)

Produce a similar diagram ∆W(φ) to Fig. 3.14-right.1419

Accelerate over more turns, observe the particle decelerate.1420

(b) Repeat (a) for the index definition of exercise 3.11: k=-0.03, defined on the1421

200 keV injection radius R0 = 12.924888 cm, with B0 = 5 kG.1422

3.17 The Cyclotron Equation1423

Cyclotron model settings of exercise 3.5 are first considered in questions (a) to (c):1424

two dees, double accelerating gap, uniform field B = 0.5 T (a field map or analytical1425

field modeling can be used, indifferently). In question (d) a field index is introduced.1426

(a) Set up an input data file for the simulation of a proton acceleration from1427

0.2 to 20 MeV. In particular, assume that cos(φ) reaches its maximum value at1428

Wm = 10 MeV; find the RF voltage frequency from d(cos φ)/dW = 0 at Wm.1429

(b) Give a graph of the energy-phase relationship (Eq. 3.27)

cos φ = cos φ0 + π

[
1 − ωrf

ωrev

E + E0

2M

]
E − E0

qV̂

for φ0 =
3π
4 ,

π
2 ,

π
4 , from both simulation and theory.1430

(c) Re-do the exercise using an RF frequency third harmonic of the revolution1431

frequency, in the same double-dee configuration.1432

(d) Repeat (a) and (b) for the index definition of exercise 3.11: k=-0.03, defined1433

on the 200 keV injection radius R0 = 12.924888 cm, with B0 = 5 kG.1434
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3.18 Cyclotron Extraction1435

(a) Acceleration of a proton in a uniform field B=0.5 T is first considered, this is1436

the case of exercise 3.5.1437

Compute the distance ∆R between turns, as a function of turn number and of1438

energy, over the range E : 0.02 → 5 MeV. Compare graphically with theoretical1439

expectation.1440

(b) Assume a beam with Gaussian momentum distribution and rms momentum1441

spread δp/p = 10−3. An extraction septum is placed half-way between two successive1442

turns, plot the percentage of beam loss at extraction, as a function of extraction turn1443

number - COLLIMA can be used for that simulation and for particle counts, it also1444

allows for possible septum thickness.1445

(c) Repeat (a) and (b) considering a field with index - conditions of exercise 3.101446

for instance, B0 = 0.5 T and k = −0.03 at R0 = R(0.2 MeV) = 12.924888 cm.1447

(d) Investigate the effect of injection conditions (x0, x
′
0) on the modulation of the1448

distance between turns.1449

Show that, with slow acceleration, the oscillation is minimized for an initial1450

|x ′
0 | = | x0νR

R
| [8, p. 133].1451

3.19 Acceleration and Extraction of a 6-D Polarized Bunch1452

The cyclotron simulation hypotheses of exercise 3.17-a are considered.1453

Add a short “high energy” line, say 1 meter, for beam extraction downstream of1454

the cyclotron (which means following REBELOTE in the optical sequence), ending1455

up with a “Beam_Dump” MARKER.1456

(a) Create a 1,000 particle bunch with the following initial parameters:1457

- random Gaussian transverse phase space densities, centered on the closed orbit,1458

truncated at 3 sigma, normalized rms emittances ǫY = ǫZ = 1 πµm, both emittances1459

matched to the 0.2 MeV orbit optics,1460

- uniform bunch momentum density 0.2×(1−10−3) ≤ p ≤ 0.2×(1+10−3)MeV,1461

matched to the dispersion, namely (Eq. 3.21), ∆x = D
∆p

p
,1462

- random uniform longitudinal distribution −0.5 ≤ s ≤ 0.5 mm,1463

Note: there is two possibilities to create this object, namely, using either1464

(i) MCOBJET, or (ii) OBJET[KOBJ=3] which reads an external file containing1465

particle coordinates.1466

Add spin tracking request (SPNTRK), all initial spins normal to the bend plane.1467

Produce a graph of the three initial 2-D phase spaces: (Y,T), (Z,P), (δl,δp/p,1468

check the matching to the 200 keV optics.1469

Plot the Y, Z, dp/p, δl and SZ histograms. Check the distribution parameters.1470

(b) Accelerate this polarized bunch to 20 MeV, using the following RF conditions:1471

- 200 kV peak voltage,1472

- RF harmonic 1,1473

- initial RF phase φ0 = π/4.1474

Produce a graph of the three phase spaces as observed downstream of the ex-1475

traction line. Plot the Y, Z, dp/p, δl and SZ histograms. Compare the distribution1476

parameters with the initial values.1477

What causes the spins to spread away from vertical?1478
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