HW 1 (5 points)
Use the following identity

$$
\sum_{p=-\infty}^{\infty} \delta(x-p)=\sum_{l=-\infty}^{\infty} e^{i 2 \pi / x},
$$

to prove Poisson summation formula:

$$
\sum_{l=-\infty}^{\infty} F(l C)=\frac{1}{C} \sum_{p=-\infty}^{\infty} \tilde{F}\left(\frac{2 \pi p}{C}\right)
$$

where $F(z)$ and $\tilde{F}(k)$ are Fourier pairs related by

$$
F(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k z} \tilde{F}(k) d k
$$

HW 2 (5 points)

Show the impedance of above circuit can be expressed as

$$
Z_{0, / /}=\frac{R_{s}}{1+i Q\left(\frac{\omega_{R}}{\omega}-\frac{\omega}{\omega_{R}}\right)},
$$

and find the expression for Q and ω_{R} in terms of C, R_{s}, and L.

