Homework 14. Due October 28

Problem 1. 15 points. Oscillating external force.

For a linear one-dimensional motion of particle in an storage ring with circumference C
consider an oscillating force applied to the particle:
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Betatron tune and the eigen vectors are known function
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are considered to be known.

(a) Find solution in a form
x=x,(s)+x,(s)
where is x,(s) well know free oscillations and forced oscillations
x,(s)=b(s)cos(wt+¢);b(s+C)=b(s)
Find expression for b(s) in a form of integral over the ring circumference.

Hint: use class notes for a general case and apply it to 1D
(b) Find and write down resonant conditions, when amplitude of oscillation is unlimited.
Solution: Let’s write this as:

o |
X=| b |=> X'=DX+ReF:F= eMik="1
p f(s) v,

X=ReZ; Z/=DZ+F
Z=UA"U"=DU —UA =F

A=4,+ [0 (E)P(E)de

z<s>:c(Ao+j0-l<¢>F<s>d5j

and



Z(s+C)= (7(s+C)£AU - S]CU‘l(é)F(g)dg] =

s+C

U(s)A[AU+jU’1 E)déE + j U )d&]

Since the external force is oscillating with a given frequency, let’s try to find a particular
solution which has both: a complex amplitudes periodic with s and oscillating with the
external frequency. Since the general solution of non-homogeneous linear OD equation is
a combination of a particular solution of the inhomogeneous equation plus a general
solution of homogenous equation. Thus, let’s set
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It is easy to see that is periodic function of's: g(s+ C)= g(s). Thus we fond the solution
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and corresponding derivative.

Second part: let’s look onto the denominators 1— ¢ and 1- ¢ ) they turned into
zeros (e.g. amplitude of excited oscillation grow to infinity — in linear approximation)
when
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where N is an arbitrary integer. It is called a resonant excitation of oscillations — it allows
to measure the non-integer part of the tune. But note, it can not distinguish between = Q.

Finally, for such a system located at s,: f(s)=f£,6(s—s,)
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