Homework 12.
Problem 1. 20 points. A weak transverse coupling.
*** STAR part - 50 points

Consider a fully uncoupled x and y betatron motion in a storage ring with circumference
C:
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The eigen vectors and tunes are considered to be known. Introduce a week coupling by
SQ-quadrupole and solenoidal fields (for torsion equal zero):
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(a) Write explicitly expressions for new betatron tunes using our developed perturbation
method. Show that there is linear term on dn,0L only in case of coupling resonance
when u ==+ u,+ 2xm .
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(b) For the case u, # , write expressions for new Eigen vectors perturbation method

developed in class. Normalize them symplecticly.

Solution - use perturbation theory from lecture 18, Sample III:
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Here is a short re-collection:
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and symplectic orthogonality of the eigen vectors
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Now we want to have periodic eigen vectors, e.g.
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we need to choose the initial conditions to make a coefficient looking like
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We shall start from writing deviation of the Hamiltonian (desirably in

J. d&f(g)eie(f).

(18-15)

the matrix form):
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In our case we have only 2D case
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First, let’s find tune changes
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to prove that they indeed change only in the second order of 6L . If

one gets to the next

(second order) perturbation — there will be also second order term of dn . Still, no first
order chance. A special case of the resonance u, =+u +27m - we will consider later.

To find perturbed eigen vectors using straight-forward convolutions
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It is easy to see that attained expression is periodic. We can show that new set is
symplectic-orthogonal for a general case - it is not more complicated that for specific
case. We just need to re-write (8-15) in a compact form.
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With obvious Y,,"SY;, =0 let’s check first normal pairs Y, .Y, :
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0(82):zl-gzz(|akjr_|bkjr)
jk

Let’s now look at Y, TSY mzk
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Again, red term are equal zero and can be dropped. Similar equation work for
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Note, that this is all approximation with error of 0(82) . Naturally, not to have any errors,

we should get the transport matrices for the motion and then do everything perfectly — but
not analytically!



