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1.1 Relativistic Mechanics
From here further: i=0,1,2,3 in Minkowki space with (1,-1,-1,-1) metric.

Let’s use Principle of Least Action for a relativistic particle. To determine the action integral for
a free particle (which does not interact with the rest of the world), we must ensure that the action integral
does not depend on our choice of the inertial system. Otherwise, the laws of the particle motion also will
depend on the choice of the reference system, which contradicts the first principle of relativity. Therefore,
the action must be invariant of Lorentz transformations and rotation in 3D space; i.e., it must depend on a
4D scalar. So far, from Appendix A, we know of one 4D scalar for a free particle: the interval. We can
employ it as trial function for the action integral, and, by comparing the result with classical mechanics
find a constant « connecting the action with the integral of the interval:

4
ds® = dx'dx,= ) dx'dx, = (cdt)2 - (d?)2

i=1
S=—O£Tds=—ajw/(cdt)2—d?2. (16)

A A

The minus sign before the integral reflects a natural phenomenon: the law of inertia requires a resting free
particle to stay at rest in inertial system. The interval ds = cdf has a maximum possible value (

2 . . .. . .
cdt 2+/(cdt) - dr’ ) and requires for the action to be minimal, that the sign is set to be "-".

The integral (16) is taken along the world line of the particle. The initial point A (event)
determines the particle’s start time and position, while the final point B (event) determines its final time
and position. The action integral (16) can be represented as integral with respect to the time:

B B B - —
S=—aJ-\/(cdt)2——d?2 =—acIdt\/1—V2/02 =JLdt; L=—-oc /1_‘%; ﬁzﬂ;
A A A

dt

o

where L signifies the Lagrangian function of the mechanical system. It is important to note that while the
action is an invariant of the Lorentz transformation, the Lagrangian is not. It must depend on the reference
system because time depends on it. To find coefficient &, we compare the relativistic form with the
known classical form by expanding L. by vie

=2 =2
1% 1%
=—0c+o _—; L =m—;

{}’ 2
) 2¢ classical — o)

L=-oc,/1-

o

which confirms that ¢ is positive and o = mc, where m is the mass of the particle.
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Thus, we found the action and the Lagrangian for a relativistic particle:

B
S =—mcds ; (17)
A

Lz—mczw/l—ﬁ‘ (18)
¢’

The energy and momentum of the particles are defined by the standard relations eqs. (4) and (5):

. dL v .
5=l m\:2 — ymv; (19)
%
1=
E=pv—L=ync*; y=1/A1-v*/c? (20)
with ratio between them of
E’=p°c +(mc2)2. (21)

The energy of the resting particle does not go to zero as in classical mechanics but is equal to the famous

Einstein value, E = mc’; with the standard classical additions at low velocities (v << ¢;p << mc):
=2 =2
v

E=mc’ +m— Emc2+p—.
2 2m
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Four-momentum, conservation laws. The least-action principle gives us the equations of motion and an
expression for the momentum of a system. Let us consider the total variation of an action for a single

particle:
oS = —mc5]ids = —mc5J€ Vdx'dx, =— mc{'lf,/d&c"dxi +4/dx'dox;} =
A

B

B i
{J‘ dox' dx, dx ddx, _ CJ'dxdéx. :—mcjuid5xi;
dx'dx, dx'dx, o ds y
where ' = dx'/ds is 4-velocity. Integrating by parts,

B .

d 4

oS = |2+ ch- Ox, L ds; (22)

7 ds

we obtain the expression that can be used for all purposes. First, using the least-action principle with fixed
A and B 0x;,(A)=0x,(B)=0 , to derive the conservation of 4-velocity for a free particle:

du'
ds

=0; u' =const or the inertia law.

Along a real trajectory mc =0 the action is a function of the limits A and B (see eq. (12):

\)

88, utve = (—ESt + PSF) " | ie., dS

and momentum as the parameters. We note that this form of the action already is a Lorentz invariant:

8, uma = (—ESt + PSF) " = (~P'6x,)

real traj A

= —Edt + PdF is the full differential of t and ¥ with energy

realtraj ~—

i.e. classical Hamiltonian mechanics always encompassed a relativistic form and a metric: a scalar
OS is a 4-product of P and Ox, with the metric (1,-1,-1,-1). Probably one of most remarkable

things in physics is that its classic approach detected the metric of 4-D space and time at least a
century before Einstein and Poincaré.
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B .
du'
To get 4-momentum, we consider a real trajectory mcj OxX, 7 ds =0 and set Ox,(B)= Ox;:
s
A
95 _ : _ B
p =—8—=—85=mcu = (yme,ymv)=(E / c,p) (23)
'xi
with an obvious scalar product (u'u, =1, see Appendix A. eq. (A.42))
p'p.=E |’ =p =m’cu'u =m’c®. (24)
Equivalent forms of presentation are
i - . (mc,mv)
p =(E/c,p)=my,(c,v)= 25
Y V1=v?/c? ()
and, Lorentz transformation ( Pisa 4-vector, K' moves with V= e V)
E= YV(E,+Cﬁvp;);px =7, (P, +ﬁvE, / C);py,z = P;,Z;}’V =1/y l_ﬁvz ;:Bv =V/c; (26)

where subscripts are used for ¥, to define the velocity to which they are related. .
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Equation (24) expresses energy, velocity, and the like in terms of momenta and allows us to
calculate all differentials:

= - dp-cp ‘p-dp . _
E:c\/pz+mzcz;dE=cd\/p2+mzcz= PP __°2P p:v-dp; (27)
\/[52+m2C2
y=— P Gdi=dv=d—P -
\/132+m2c2 \/p +m’c’
c(dp(p* +m>c) = p(pdp))  dp-m’c® +[ px[dpx p]] (28)

3 =C ’
( 132+m2c2) (\/p +m’c )

Coefficients Yy = E/ mc?; B =v/ c differ from the above by constants, and satisfy similar relations.

The conservation laws reflect the homogeneity of space and time (see Mechanics): these natural
laws do not change even if the origin of the coordinate system is shifted by Ox . Then,
Ox;(A) = 0x,(B) = Ox;. We can consider a closed system of particles (without continuous interaction,

1.e., for most of the time they are free). Their action is sum of the individual actions, and

Y 88, = - meu' )|k = - meu '«(A) =Y p'a(B)}Sx; =0 (29)

Z pla(A) = Zpia(B) = (Z E, / C,Zﬁ) = const . (30)
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1.2 Particles in the 4-potential of the EM field.

The EM field propagates with the speed of light, i.e., it is a natural product of relativistic 4-D space-time,
hence, the 4-potential is not an odd notion!

In contrast with the natural use of the interval for deriving the motion of the free relativistic particle, there
is no clear guideline on what type of term should be added into action integral to describe a field. It is

possible to consider some type of scalar function J.A(xi )ds * to describe electromagnetic fields, but this

would result in wrong equations of motion. Nevertheless, the next guess is to use a product of 4-vectors
A'dx;, and surprisingly it does work, even though we do not know why? Hence, the fact that

electromagnetic fields are fully described by the 4-vector of potential Ai:(AO,A) must be

considered as an experimental fact!

Nevertheless, it looks natural that the interaction of a charge with electromagnetic field is
represented by the scalar product of two 4-vectors with the —e / ¢ coefficient chosen by convention:

B
S == [Aldx,; A'=(A°,A)= (9.4) (31)
C
A

where the integral is taken along the particle’s world line. A charge ¢ and speed of the light ¢ are moved
outside the integral because they are constant; hence, we use the conservation of the charge ¢ and

constancy of the speed of the light !
It is essential that field is GIVEN, SINCE we are CONSIDERING a particle interacting with a given
field.

L 9A=0
S
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Turning our attention back to the Least-Action Principle and Hamiltonian Mechanics
The standard presentation of 4-potential is

A=A A)=(p.A); (32)
where ¢ 1s called the scalar potential and A is termed the vector potential of electromagnetic field.

Gauge Invariance. As we discussed earlier the action integral is not uniquely defined; we can add to it an
arbitrary function of coordinates and time without changing the motion: $” =S+ f(x,). This corresponds

to adding the full differential of f in the integral (31)

e . .
S’ = j [—mcds ——A'dx, + dxié”f)
4 c
This signifies that the 4-potential is defined with sufficient flexibility to allow the addition of any 4-

e
gradient to it (let us choose f(x,)= ;g(xi))

L O
A/l:A1_81 . :AI__,

1

without affecting the motion of the charge, a fact called THE GAUGE INVARIANCE .

We should be aware that the evolution of the system does not change but appearance of the
equation of the motion for the system could change. For example, as follows from (33), the canonical
momenta will change:

P'=P-0F.

Nevertheless, only the appearance of the system is altered, not its evolution. Measurable values (such as
fields, mechanical momentum) do not depend upon it. One might consider Gauge invariance as an

inconvenience, but, in practice, it provides a great opportunity to find a gauge in which the problem
becomes more comprehensible and solvable.
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The action is an additive function: therefore, the action of a charge in electromagnetic field is simply the

direct sum of a free particle’s action and action of interaction: (remember
ds =ds’ | ds =dx'dx, | ds =u'dx,)

e . B e .
S = f(—mcds —= A'dx,.) = J(—mcu’ —-—A )dx,.
A C A C

Then the total variation of the action 1s

oS = 5?[—mcds —EAidxij: j[—mc dx dox, —EAid5xl. — E5Aidx,.]=

7 c 7 ds c c

B
—chui +£Ai]§xi:| + j[mcd—u&c ds+— 5xidAi —£5Aidxi)20.
C 4 ds c c

That gives us a 4-momentum

, SS , . ~ . .
P =—-—— :(mcul +€Al)=(H/C,P)= p' +€Al;
Ox; C c

l

with

H = E = c(mcu’ +EAO)=)/mcz+e(p :c‘/m202+j’92 + eQ,
C

P=yw+-A=p+-A;=>p=P-" A

mlm
K
SR
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—

e e 3 . .
The Hamiltonian must be expressed in terms of generalized 3-D momentum, P = p+—A and it is
c

2
H(F,F,I)=C\/m2€2+[p—£;\) teop, (38)

Cc

with Hamiltonian equation following from it:

dr oH Pc —eA

dt oP .Y
mict+|P-——A
C

(P-SA) V}A
C

2
\/mzcz +(13 —621)
C

From this equation we can derive (without any elegance!) the equation for mechanical momentum
p =ynv . We will not do it here, but rather we will use easier way to obtain the 4D equation of motion

via the least-action principle. We fix A and B to get from equation (35)

V=

!

NS S
c dt or eve—e

P A H . oo
d =f§ edA O ——Vo-S@-V)A;
C

c c A ds c Jx, c ox,

B i i k
j dp +e{8A _ oA }uk x.ds =0.
Al ds  clox, X,

1

B , . B i A’ A"
58 = J["’tCu’5xfds + € SrdA' - eSA"dxkj B J(mc O buds+ € ’ S, — ? 5xidx"j B
A (39)

10
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As usual, the expression inside the round brackets must be set at zero to satisfy (39); i.e., we have the

equations of charge motion in an electromagnetic field:

du' dp' e
me — =L =—F"u,;

ds ds ¢

wherein we introduce an anti-symmetric electromagnetic field tensor
Fik — &Ak _ %
ox, ox,
Electromagnetic field tensor: The Gauge Invariance can be verified very easily:
oot _ A JA" i J°g s rg
ox, ox, oxox, oxox,

(40)

(41)

which means that the equation of motion (40) is not affected by the choice of the gauge, and the
electromagnetic field tensor is defined uniquely! Using the Landau convention, we can represent the

asymmetric tensor by two 3-vectors (see Appendix A):
Fik = (_Eaé),F,k = (Eaé)9
0 -E, —-E -E

. E 0O -B B,
Flk — X z y
E B 0O -B

y 4 x

E. -B, B 0

4 y X

(42)

E is the so-called vector of the electric field and B is the vector of the magnetic field. Note the

occurrence of the Lorentz group generator (see special material for Lecture 2) in (42).
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The 3D expressions of the field vectors can be obtained readily:

JA° QA Jp 19A" . 104
E°=F"=""-""-= o =1,23;E=—— —grad; 43
ox, Jx, 8r c Jdt cor 8MY 45)
A K
B% = —le""”lF'”l =™ AN = curlA; F* = e H . (44)
2 ox, ox,

A 3D asymmetric tensor ¢** and the curl definition are used to derive last equation and use Greek
symbols for the spatial 3D components. The electric and magnetic fields are also Gauge invariant being

components of Gauge invariant tensor.
We have the first pair of Maxwell's equations without further calculation using the fact that differentiation
is symmetric operator (9'9" = 9°9"):
eik]makF Im — eiklm&k (0")1Am _ 0")mAI) — zeiklm (8kal)Am — O, (45)
or explicitly:
IFF" +'F™ +9"F" =0. (46)
A simple exercise gives the 3D form of the first pair of Maxwell equations. They also can be attained

using (43) and (44) and known 3D equivalencies: div(curlA) =0 ;curl(gradg) = 0

E :—grad(p—la—A curlE :—curl(grad(p)—lcurla—A:—l&—B;
c

c ot g ¢ ot (47)

= curl;\; divB = div(curlA) =0;
I note that (47) is the exact 3D equivalent of invariant 4D Maxwell equations (45) that you may wish to
verify yourself. There are 4 equations in (45): 1i=0,1,2,3. The div is one equation and curl gives three

(vector components) equations. Even the 3D form looks very familiar; the beauty and relativistic
invariance of the 4D form makes it easy to remember and to use.
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EM Fields transformation, Invariants of the EM field. The 4-potential was defined as 4-vector and it
transforms as 4-vector. The electric and magnetic fields, as components of the asymmetric tensor, follow
its transformation rules (See Appendix A).

e=y(@"+ BA)); A =Yy(Al+Bo");
E =y(E}+BB)); E. =y(E.- BB)); (48)
B, =v(B,- BE)); B.=Y(B!+BE)).

and the rest 1s unchanged. An important repercussion from these transformations is that the separation of
the electromagnetic field in two components is an artificial one. They translate into each other when the

system of observation changes and MUST be measured in the same units (Gaussian). The rationalized
international system of units (SI) system measures them in V/m, Oe, A/m and T. Why not use also a horse

power per square mile an hour, the old British thermal units as well? This makes about the same sense as
using Tesla or A/m.

While the values and directions of 3D field components are frame-dependent, two 4-scalars can be build
from the EM 4-tensor F* = (—E ,l§)
F*F, =inv; e""F,F, =inv; (49)
which in the 3D-form appear as
B> —E* =inv; (E B):inv. (50)
This conveys a good sense what can and cannot be done with the 3D components of electromagnetic
fields. Any reference frame can be chosen and both fields transferred in a minimal number of components

limited by (50). For example; 1) if ‘E‘ > ‘E‘ in one system it is true in all systems and vice versa; and (2)

if fields are perpendicular in one frame, (E- B) =0, this is true in all frames. When (E- B) =0 a frame
can always be found where E or B are equal to zero (locally!).
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Lorentz form of equation of a charged particle’s motion.

The equations of motion (40) can rewritten in the form:

dE  dp’ L d B,

—=ci=eF°ka=eE- v, v, = k= (e,-V)

dt dt dt (51)
dp . . . . - -

&L =e[eaF“k ﬁjzf( L cF* —e - FaKVk) =eE+¢,"B, Ze =eE+£[V><B].

dt c c c c

So, we have expressions for the generalized momentum and energy of the particle in an electromagnetic
field. Generalized momentum is equal to the particle’s mechanical momentum plus the vector potential
scaled by e/c. The total energy of the charged particle is its mechanical energy, ymcz, plus its potential
energy ,e@ , in an electromagnetic field. The Standard Lorentz (not Hamiltonian!) equations of motion
for p=ymv are

@:eﬁj+5[\7x§]. (52)
dt c
with the force caused by the electromagnetic field (Lorentz force) comprised of two terms: the electric
force, which does not depend on particle’s motion, and, the magnetic force that is proportional to the
vector product of particle velocity and the magnetic field, i.e., it is perpendicular to the velocity.
Accordingly, the magnetic field does not change the particle’s energy. We derived it in Eq. (51):

d}/ -
2 = E- #V;
mc ” e (53)

Egs. (52) and (53) are generalized equations. Using directly standard Lorentz equations of motion in a 3D
form is a poor option. The 4D form is much better (see below) and, from all points of view, the
Hamiltonian method is much more powerful!
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It is worth noting that the 4D form of the charge motion (40) and its matrix form is the most compact one,

ui:CZi; ‘;S_—Fku = <[] = [ [k ] =

and, in many cases, it is very useful. We treat the x, u as a vectors, and [F] as the 4x4 matrix. /1] is just
the unit 4x4 matrix It has interesting formal solution in the matrix form:

(54)

—[Flds

[Ll]_ e-[ me [uo] [X] [x ]+{ste '"CZ[F]va[MO] )

Its resolution is well defined when applied to the motion of a charged particle in uniform, constant EM
field:

[u]—e’"‘ net 71 YO)[uo]' x]=[x()]+[J‘em;[F](S_SO)ds}[uo] (56)

The Lorentz group of theoretical physics (see Appendix B) is fascinating, and the fact that EM field
tensor has the same structure as the generator of Lorentz group is no coincidence — rather, it is indication

that physicists have probably come very close to the roots of nature in this specific direction. This
statement is far from truth for other fundamental forces and interactions.

To conclude this subsection, we will take one step further from (54) and write a totally linear evolution
equation for a combination of 4D vectors

d |—x—| |_x—| {0 1 1
— FIAL| b Al e p
dsLuJ LuJ |_ e’ J (57)
where [A] is an 8x8 degenerated matrix. Similarly to (55) and (56)

| x| |x]

BJ = eJ[A]ds 'LMJO; LMJ = elMes! BJ for [A]=const; .

0

PHY 564 Fall 2017 Lecture 3 15



First pair of Maxwell's equations (a little more of juice)

We will derive full set of Maxwell equations using the least action principle. Nevertheless, you
can consider the Maxwell equation as given - in any case they were derived originally from numerous
experimental laws!

First pair of Maxwell's equations is the consequence of definitions of electric and magnetic field
through the 4-potential:

1 94 1 JdA 10H
E=—grad ———- IE = —curl dp)——curl —=————;
gradae c ot it is equivalent to cur curl(gradg) cur ot c dt (99)

H= curlA; divH = div(curlA)=0;

Nevertheless, it 1s very important to remember that they are actually originated from experiment. First
Maxwell equation is the Faraday law and the second is nothing else that absence of magnetic charge! You
B

€[ i . . .
should remember all time that inclusion of the term S, , = ——IA dx, into action integral is consequence
A
of experiment! Thus, the first pair of Maxwell equations governing the electromagnetic fields is:
1 8H
IE = — 60
CUur - 8[ ( )
divH=0; (61)
with well known integral ratios following it:
Gauss' theorem: ﬁ[jldﬁ = J divHdV = 0; (62)
. = -1 .o
Stokes' theorem: {)Edl = J.curl Eda = 12 Hda,
c ot
(63)

where da is vector of the element of the surface and d/ is a vector of a contour length. Integral equations
read: the

1) Flux of the of the magnetic field though the surface covering any volume V is equal zero;

2) The circulation of electric field around the contour (electromotive force) is equal to the derivative
of the magnetic flux though the contour scaled down by "-c" - the Faraday law.
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7.2 Action of the electromagnetic field.

As we discussed earlier, in the relativistic picture of the world, the field acquires its it’s own
physical reality. Therefore, the action of whole system including a particle and a field must consist of
three parts: the action of free particle, the action of free field and the action their interaction:

S=8§,+S8,+S,. (64)

We already got first and last term. For a several free particles, the action is the direct sum of individual
actions:

S,= —z mcj ds; (65)
p
and interaction with the field is the sum of their individual interactions:
€ i
Spf:—zszdxi. (66)
V4

The sum of (65) and (66) gives us equation of particle's motion in "external", i.e. pre-defined

electromagnetic fields. Now we want to know how charged particles influence the EM field and how EM
field evolves on its own? We do not know, also, what defines properties of a free field? First pair of

Maxwell equations gives us only two connections: the time derivative of the magnetic field and its
divergence (zero). We still don't know what is time derivative of electric field and what is its divergence?

Please remember that all following discussion must be considered as a logical excise. Final form
of the field action has to have the most important property: it must satisfy the experimental observations!
Where to start to get them?
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One of the most important properties of the field confirmed by experiments is the Principle of
Superposition:
the resulting field produced by various sources is a simple composition (the direct sum) of the fields
produced by individual sources! It means that resulting electric and magnetic fields are vector sum of
individual fields. Thus, we have a clue that we should look for type of equations, which allows
superposition of solutions, i.e. linear differential field equations*. In order to generate linear differential
equations, the action should contain quadratic expression of the field components**, which described by

field 4-tensor F* .

*In field theory the 4-vector of the field A" is coordinate of the field. Therefore, field's 4-tensor is first order
derivative of the coordinates. According to Hamiltonian principle, the action could have under integral only

coordinates and their first derivatives. This requirement excludes derivatives of F* from the action's integral.

** 4_vector of the field A' is not unique (Gauge transformation) and trial function comprising 4-vector of the field
will give non-unique equation of the field. The difference with interaction term is that last includes first order of 4-
potential and non-uniqueness does not affect equation of motions. Situation is not the same for quadratic term! A
variation acts in similar manner as a differentiation - “to get linear (2x') we need to differentiate (x°)”.

In addition, the action must be 4-invariant (4-scalar, not pseudo-scalar!), which leaves us with
F*F, =2(H>-E?*). Finally, the field is "an entity leaving" in space and time coordinates. In order to
describe total field we should integrate over all space between two "time" events
dQ = dx’dx"dx’dx’ = cdtdV which is 4-invariant: dQ =e,, dx'dx,dx dx"} where a,b,c,d four 4-vectors
defining element of 4-volume. Therefore, a probable form of the action of the EM field is:

S, =-a| F* FdQ. (67)

The choice of the coefficient before integral is equivalent to the choice of the units to measure the field. In
the Gaussian system of units, which we are using, fields are measured in Gs and coefficient is

1
C167mc

a (68)

The total action is:

— _N e Ady ——— [ F*
S= zp:mcjds ZP“CJAdxi 1671'ch F,dQ. (69)
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4-current and equation of continuity. The conservation of the charge should affect our equations. Let's
make a glance on this issue and write a charge conservation law in the form useful for future derivation of
the field equations. It is very useful to describe charges by a distribution function. The charge density p

1s defined as the charge contained in unit volume:

de = pdV ; (70)

and microscopic (exact in classical EM) definition of p 1s sum of Dirac's delta-functions:

EDNRGETHF (71)
where index a 1s index to count particles. 4-vector of current is defined as:

J =P I (72)
The fact that j' is a 4-vector comes from equivalence:

: dx' dx'
dedx' = p— - dtdV = p— - dQ.

p i p 7 ; (73)
and the fact that charge is 4-scalar or invariant (experimental fact) and d€2 =dVdt is the 4-scalar. Thus:

j'=(pe,j)j=pv. (74)
To be exact, for point charges, the 4--current is:

; L dx,
Jj =zea5(r —ra)d—t“. (75)
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It is the microscopic 4-current for ensemble of particles. When it is necessary, it can be averaged over a
"small volume" for macroscopic description. We do not need averaging now and can comfortably use Eq.
(75). Our goal is to get the equation of continuity:

i_ 9
dj =
W

which is resulting from charge conservation. It is easy to do for microscopic distribution (75):

d.j = Ze { (8¢ =7, @®)c)+div(S(F = 7,))V,)) }zﬁeﬁ&?-fu)-{— ‘9’3:’) +§a}

( P+ divj)=0; (76)

=0;

(77)
with 0" =9/ dct,d/ I);d 1 IF(r,(1))=0 and we use derivative of Dirac's delta-function. Now we are
ready for next trick, i.e. to present action of the interaction as integral of 4-current:

Lo 1
e, =[esG-r)av: | Se A =
1 1 1 (78)
ZjAk;eadxka(f—z,)dv:;jAkjk dfd":C—zJAkjde

PHY 564 Fall 2017 Lecture 3 20



Side note: Today we are using the method, which 1s standard for all modern filed theories: QED, QCD,
SUSY, etc. In self-consistent theories, particles become fields as well. In QED, an electron is not a point
particle but a "wave" described by 4-spinor . We can include this into our action very easy by writing

correct QED current in the interaction term (78)
J=yry.
In this case, the current is a continuous function of the space and time. It is a better way that having

Dirac's delta-function. The nature of the current, as we would see, does not change equation of the field

motion. It means that Maxwell equations do not change when we introduce quantum description of
charges! In this case, the equation of the charges motion should be also proper, i.e. those derived by

Dirac:

I would not go into details of Dirac's description of electron and his 4x4 y-matrices. If you are interested,
look through one of many QED books. Thus, equivalent form of (7-12) is:

1 , 1 ,.
Sz_zmjds—c—szk]"dQ— 167TCJFkFide. (79)
p

\9)
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Second pair of Maxwell's equations: more of the least action...

We already found equation of charges motion in the field. Let's consider all charges following
their equation of motion

.k
5jbl‘particles[zp:mcj.ds + J.Ak] dQ] =0 . (80)

Let's changes move along their real trajectories. Now we will vary only the field to find its equations of
motion:

1 J ;
S5S = — (16784, + cS(F“F,))dQ = -

where we use

(8764, + cF “6F, )dQ = 0; (81)

F*8F, = 6F"F,. (82)
It is important to remember that we can vary both particle's trajectories and field if we wish. It will give
us two terms in the variation of the action: one containing variation of the trajectories

dp, 0A'  JA"
S are ZJ( —{ o ox }uk)&c ds (83)

i

and the other containing variation of the field. Variations for each particle and the field are independent.

[\®)
\S)
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Therefore, each independent component of action’s variation must be equal zero. (83) will give us again
equation of particle's motion, while field terms (81) will bring us to the field equations. Let's rewrite
second term in (81):

Fie = 0 Ax — i A

F“SF, = F0.6A — F*0,6A = —F"0.8A — F*9,0A = -2F"9,6A, . (84)

Now we can integrate by parts:

1 . .
68 =-—— [(4754,j' = cF*9,8A,)dQ =
(85)

4rcj'+cd, F*)6A dQ———|F*8A.dS,
k 1 k

4re

suraface of Q

2

4rc
with second integral obtained by 4D Gauss theorem:
j div,A'dQ = § A'dS;, (86)

where dS; is element of hyper-surface surrounding 4-volume Q. It is not so essential, how it looks. One
simple case: we integrate over all space and fixed time interval (77,¢2). Surface of the W is full 3D space at

moments of 77,¢>. The least action method calls for zero variations on the boundaries JA |Wafacw 0 =0
and second integral in (85) disappears leaving us with:
1 i 1]
8 =-—— [(anj' +co F*)oad2=0. (87)
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Please notice that we are left only with variations of 4-potential. It is very natural because variations of 4-
potential fully define field's variations. Equation (87) gives us "second pair" of Maxwell equations in 4D

form:

OF* 4w
ox* ¢ /
3D form follows directly from (88) and form of the field tensor:
0 -E -E, -E

E 0 -H H

X Z y

E H 0 -—-H_|;

y < X

E., -H, H_ 0

| Z

Im
F =

and yields:
divE = 4rp;
-~ 4x - 1 6&?
curlH = — ] +—

cor
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Integral equations are obvious applications of Stokes and Gauss theorems to Eqs (90-91)

$ Edd=ar | pav: (92)
-~ 1¢ - OE_._
§Hdl = ZJ(47tj + E)da. (93)
Equivalent forms of Maxwell equations:
B, 1 0A .
E=—-gradp ———; . AAF A
cot o Frf=— (94)
_ - ox, ox
H = curlA; ’ g
Compact 4-D:
- OF OF* 4r
iklm m ol
T ® P ©
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What we rehashed

We continued using the Least Action Principle and obtained all
necessary equations

— For motion of relativistic charged particles in E&M fields
— And their influence on E&M field, e.g. E&M field evolution

We continued path of using Hamiltonian formalism and defined
Canonical momentum of charged particle in E&M field

This ends out refresher classes - now we are ready to take on real
accelerator physics

Again, during this class we covered few months worth of material

You should refresh your memory by flipping through your favorite
E&M and relativistic mechanics books
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