
Homework 17. Due November 11 
 
Problem 1. 10 points. Two frequency RF system. Consider a storage ring negative ητ
and the RF system operating at two frequencies: 
 

dE
ds

= eVo
C

sin hrf koτ( )− sin 2hrf koτ( )( )
 

Find stationary point on the phase diagram, draw characteristic phase-space trajectories 
(approximately is fine) and show the direction of the motion by arrows. 
 
Problem 2. 4x5 points.  
 
For a single frequency RF system with Hamiltonian with α  indicating an energy 
loss/gain, 

 
H s =ητ

πτ
2

2
+ 1
C
eVRF
poc

cos kohrfτ( )
kohrf

+α ⋅τ ; ητ < 0.  

1. Define the stationary points (RF phases) in the phase space and indicate level of 
α  when stationary points are no longer exists. 

2. Draw phase space trajectories for α = 1
2
⋅ 1
C
eVRF
poc

. Show the direction of the 

motion by arrows. 
3. Define the depth of the “RF bucket”, e.g. the difference between the maximum 

and minimum πτ  staying within a single RF separatrix (e.g. being localized). 
Express it through the RF voltage, the slip factor and the value of stationary 
phase.  
Note – consider the central separatrix around τ = 0 . 

4. Find period of the oscillation as function of  H s  inside the central separatrix 
(around τ = 0 ). 

 
Solution: 
Problem 1. Adding the corresponding term into the longitudinal Hamiltonian gives: 

 
H s =ητ
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hrf ko

−
cos 2hrf koτ( )
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Fig. 1 shows that graph of the RF potential with minima at nπ and maxima at ±1.0472 
rad. The correspond to the stationaty points  

dτ
ds

=ητπτ = 0 ⇒πτ = 0; ϕ = hrf koτ ;

dπτ

ds
= eVo
pocC

sinϕ − sin2ϕ( ) = 0 ⇒ϕ = nπ;ϕ = ±1.0472 rad.  



 

 
Fig.1. RF potential. It has minima at zero and ±π. It has maxima at ±1.0472 rad.  
 

  
Fig. 2. RF separatrices for negative slip factor. 
 
Expanding the Hamiltonian around the stationary points we can find if the motion is 

φ 

πτ 



stable around it or unstable (separatrix point). Be we know that for positive mass (slip-
factor) minima will be stable, but for negative mass (slip-factor) – the maxima will be 
stable. Hence, Fig.2 show the RF separatrices with stable point at ±1.0472 rad and 
unstable at zero and ±π. 
 
Problem 2. With given Hamiltonian 

 
H s = ητ

C
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2

2
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eVRF
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cos kohrfτ( )
kohrf

+α ⋅τ ; ητ < 0.  

we can easily find stationary points: 
dτ
ds

=ητπτ = 0⇒πτ = 0; ϕ = hrf koτ ;

dπτ

ds
= eVo
pocC

sinϕ −α = 0⇒ sinϕo = l f = C ⋅ poc
α
eVo

.
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;ϕo = sin

−1 l f( );
 

Stationary point do not exist (e.g. it requires impossible sinϕo >1 ) if the energy loss 
(gain) per turn exceed the maximum energy change in the RF cavity: 

ΔE = α C ⋅ poc ≥ eVo  

We now assume that the energy loss α  is positive (typical for synchrotron radiation 
losses or acceleration), we can see that the potential in the Hamiltonian has maxima at  
ϕo = 2nπ + sin−1 l f( ) and minima at ϕo = 2n +1( )π − sin−1 l f( )  . It means that for negative 

slip factor (typical for electron storage rings) ϕo = 2nπ + sin−1 l f( )  will be stable.  

 
For positive slip factor, ϕo = 2n +1( )π − sin−1 l f( )  will be stable point. For l f =1/2 

ϕo+ = sin
−1 0.5( ) = π

6
, e.g. 30 degrees. For a negative slip factor the phase-space 

trajectories will be as shown below. 



 

 
 
The depth of the RF bucket depends on the difference between the maxima and minima 
of the potential – see fig. below. 

     
Potential depth for negative (left) and positive (right) slip factor – it is obvious that the 
just different by sign. Particles outside of the RF “bucket” are not limited in the motion 
and slip either toward positive or negative infinity… 
 
Finding the difference is straightforward: 

1
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Δ cos ϕ( ) + sinϕo ⋅ϕ( )
ϕo−

ϕo+ = 1
Ckohrf

eVRF
poc

2cosϕo + sinϕo ⋅ 2ϕo −π( )( );  
and the maximum πτ  can be calculated by simply equating the depth of the potential well 

φ 

πτ 



with kinetic energy ητ
πτ

2

2C
:  

πτacc =
2

ητ kohrf
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2cosϕo + sinϕo ⋅ 2ϕo −π( )( )
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It can be rewritten in many forms. Without energy loss the RF bucket depth is maximums 
and equal to  

πτacc = 2
1

Cητ kohrf

eVRF
poc
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To find the small amplitude oscillation frequency, we need to expand the potential around 
the stationary point ϕo±  to the second order. Since α ⋅τ  is a linear function, it does not 
contribute to the second order ter. Hence, noticing that   

cos ϕo +δϕ( ) = cosϕo cosδϕ − sinϕo sinδϕ = cosϕo 1−
δϕ 2

2
⎛
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+ sinϕoδϕ +O δϕ 2( )  

we can simply conclude that our result will be different from what we derive in class by 
coefficient cosϕo : 

Ω = 1
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cosϕo

1/2

 

We used here the fact that cosϕo− = −cosϕo+ . For large amplitude oscillations, we can 
use the fact that the Hamiltonian is invariant and 
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∫

 

where τ1,2  are stopping points defined by πτ = 0 :  

1
C
eVRF
poc
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kohrf

+α ⋅τ1,2 = Ho.  

Since the period of oscillations comprises of travel back and forth, we have: 
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